Reaction prediction is a fundamental problem in computational chemistry. Existing approaches typically generate a chemical reaction by sampling tokens or graph edits sequentially, conditioning on previously generated outputs. These autoregressive generating methods impose an arbitrary ordering of outputs and prevent parallel decoding during inference. We devise a novel decoder that avoids such sequential generating and predicts the reaction in a Non-Autoregressive manner. Inspired by physical-chemistry insights, we represent edge edits in a molecule graph as electron flows, which can then be predicted in parallel. To capture the uncertainty of reactions, we introduce latent variables to generate multi-modal outputs. Following previous works, we evaluate our model on USPTO MIT dataset. Our model achieves both an order of magnitude lower inference latency, with state-of-the-art top-1 accuracy and comparable performance on Top-K sampling.
翻译:在计算化学中,反应预测是一个根本性的问题。 现有的方法通常会通过取样符号或图表编辑按顺序顺序产生化学反应, 以先前产生的输出为条件。 这些自动递减生成方法会任意排列产出, 防止在推断过程中平行解码。 我们设计了一个新的解码器, 避免这种顺序生成, 并且以非自动递减的方式预测反应。 在物理化学洞察力的启发下, 我们代表分子图中的边缘编辑, 作为电子流, 然后可以同时预测。 为了捕捉反应的不确定性, 我们引入了潜在的变量来生成多模式输出。 在以往的工程之后, 我们在USPTO MIT数据集上评估了我们的模型。 我们的模型可以达到一个低等量的低推力拉长值, 在高K取样中, 以最先进的顶层-1精确度和可比的性能。