简介: 图是表示知识的有效方法。它们可以在一个统一的结构中表示不同类型的知识。生物科学和金融等领域已经开始积累大量的知识图,但是它们缺乏从中提取见解的机器学习工具。
David Mack概述了自己相关想法并调查了最流行的方法。在此过程中,他指出了积极研究的领域,并共享在线资源和参考书目以供进一步研究。
作者介绍: David Mack是Octavian.ai的创始人和机器学习工程师,致力于探索图机器学习的新方法。在此之前,他与他人共同创立了SketchDeck,这是一家由Y Combinator支持的初创公司,提供设计即服务。他拥有牛津大学的数学硕士学位和计算机科学的基础,并拥有剑桥大学的计算机科学学士学位。
内容介绍: 本次报告涵盖内容:为什么将图应用在机器学习上;图机器学习的不同方法。现存的图机器学习往往会忽略数据中的上下文信息,使用图可以获取更多的潜在信息。图的构建方法为节点分类、边的预测,图的分类以及边的分类。两个主要方法是使用机器学习算法将图转换为table,另一种方法是将图转换为网络。在报告中作者详细介绍了这两种方法。