In this paper we present our submission for the EACL 2021 SRW; a methodology that aims at bridging the gap between high and low-resource languages in the context of Open Information Extraction, showcasing it on the Greek language. The goals of this paper are twofold: First, we build Neural Machine Translation (NMT) models for English-to-Greek and Greek-to-English based on the Transformer architecture. Second, we leverage these NMT models to produce English translations of Greek text as input for our NLP pipeline, to which we apply a series of pre-processing and triple extraction tasks. Finally, we back-translate the extracted triples to Greek. We conduct an evaluation of both our NMT and OIE methods on benchmark datasets and demonstrate that our approach outperforms the current state-of-the-art for the Greek natural language.
翻译:在本文中,我们介绍了我们提交的EACL 2021 SRW的呈件。 EACL 2021 SRW是一种方法,旨在缩小高低资源语言在开放信息提取程序范围内的差距,在希腊语上展示。本文的目标有两个方面:第一,我们根据变异器结构,为英语到希腊语和希腊语到英语建立神经机器翻译模型。第二,我们利用这些NMT模型来制作希腊语文本的英文译文,作为我们NLP管道的投入,我们对该管道应用了一系列预处理和三重提取任务。最后,我们将提取的三重语言转回希腊语。我们评估了我们的NMT和OIE在基准数据集上的方法,并证明我们的方法超越了希腊自然语言的当前水平。