We propose a conditional non-autoregressive neural sequence model based on iterative refinement. The proposed model is designed based on the principles of latent variable models and denoising autoencoders, and is generally applicable to any sequence generation task. We extensively evaluate the proposed model on machine translation (En-De and En-Ro) and image caption generation, and observe that it significantly speeds up decoding while maintaining the generation quality comparable to the autoregressive counterpart.
翻译:我们提出一个基于迭接完善的有条件的非上下向神经序列模型,拟议模型以潜在变异模型和自动电解码器为原则设计,并一般适用于任何序列生成任务。我们广泛评价了机器翻译和图像字幕生成的拟议模型,并观察到该模型大大加快了解码速度,同时保持了可与自动递减对应方相比的生成质量。