Self-supervised learning (SSL) is a Machine Learning algorithm for pretraining Deep Neural Networks (DNNs) without requiring manually labeled data. The central idea of this learning technique is based on an auxiliary stage aka pretext task in which labeled data are created automatically through data augmentation and exploited for pretraining the DNN. However, the effect of each pretext task is not well studied or compared in the literature. In this paper, we study the contribution of augmentation operators on the performance of self supervised learning algorithms in a constrained settings. We propose an evolutionary search method for optimization of data augmentation pipeline in pretext tasks and measure the impact of augmentation operators in several SOTA SSL algorithms. By encoding different combination of augmentation operators in chromosomes we seek the optimal augmentation policies through an evolutionary optimization mechanism. We further introduce methods for analyzing and explaining the performance of optimized SSL algorithms. Our results indicate that our proposed method can find solutions that outperform the accuracy of classification of SSL algorithms which confirms the influence of augmentation policy choice on the overall performance of SSL algorithms. We also compare optimal SSL solutions found by our evolutionary search mechanism and show the effect of batch size in the pretext task on two visual datasets.
翻译:自监督的学习(SSL)是一种用于在不需要人工标签数据的情况下对深神经网络进行预培训的机械学习算法(MSL),它不要求人工标签数据。这种学习技术的中心思想是基于一个辅助阶段 aka 托辞任务,在这个阶段,通过数据增强自动创建标签数据,并用于对 DNN 进行预培训。然而,在文献中没有很好地研究或比较每项托辞任务的效果。在本文中,我们研究增强操作员对在受限制环境中自我监督的学习算法的性能的贡献。我们建议一种进化搜索方法,以优化数据增强管道,在一些SOTA SSL 算法中衡量增强操作员的影响。我们通过对染色体中增强操作员的不同组合进行编码,我们通过进化优化机制寻求最佳增强政策。我们进一步引入分析和解释优化的 SSL 算法的性能的方法。我们的研究结果表明,我们提出的方法可以找到超出SSL 算法的分类准确性,从而证实增强政策选择对SSL 算法的总体性效果的影响。我们还比较了在进化搜索机制中发现的两个视觉任务中最优化的SL 。</s>