In computer vision, contrastive learning is the most advanced unsupervised learning framework. Yet most previous methods simply apply fixed composition of data augmentations to improve data efficiency, which ignores the changes in their optimal settings over training. Thus, the pre-determined parameters of augmentation operations cannot always fit well with an evolving network during the whole training period, which degrades the quality of the learned representations. In this work, we propose AdDA, which implements a closed-loop feedback structure to a generic contrastive learning network. AdDA works by allowing the network to adaptively adjust the augmentation compositions according to the real-time feedback. This online adjustment helps maintain the dynamic optimal composition and enables the network to acquire more generalizable representations with minimal computational overhead. AdDA achieves competitive results under the common linear protocol on ImageNet-100 classification (+1.11% on MoCo v2).
翻译:在计算机视觉中,对比学习是最先进的无监督学习框架。然而,大多数先前的方法仅应用固定的数据增强组合来提高数据效率,忽略了其在训练过程中最佳设置的变化。因此,增强操作的预定参数并不能始终与不断发展的网络配合得很好,在整个训练期间降低了所学表示的质量。在这项工作中,我们提出AdDA,它实现了一个封闭的反馈结构来适应通用的对比学习网络。 AdDA允许网络根据实时反馈自适应地调整数据增强组合。这种在线调整有助于保持动态最佳组合,并使网络以最小化计算成本获得更具有一般性的表示。AdDA在ImageNet-100分类的常见线性协议下实现了有竞争力的结果(MoCo v2上+1.11%)。