项目名称: 高速高可靠低成本红外单光子探测器的研究

项目编号: No.61308013

项目类型: 青年科学基金项目

立项/批准年度: 2014

项目学科: 无线电电子学、电信技术

项目作者: 徐军

作者单位: 中国科学技术大学

项目金额: 25万元

中文摘要: 单光子探测器是量子通信系统的重要组成部分,也是量子信息技术的关键器件之一。红外单光子探测器是光纤量子密码通信的研究重点,由于光纤存在极化模式色散效应的固有损耗以及传输信道受环境影响导致量子纠缠品质下降,光纤量子通信系统的传输可靠性、速度和传输距离受到严重限制,对单光子探测器提出更高要求。本项目主要针对上述问题研究高速高性能高可靠低成本的单光子探测器,提出一种新型的并行APD结构探测方法,解决死时间计数重复率与暗计数之间的矛盾,使用GHz门控正弦波信号低通滤波的专利技术,显著提高雪崩信号信噪比、探测器的探测速度和探测效率;提出一种自适应动态调整甄别电平的方法,提高探测器的检测灵敏度和可靠性;实现高速高性能高可靠低成本的红外单光子探测器,其关键技术指标为门控正弦波信号频率达5GHz、探测效率大于10%、暗计数率低于10-7、计数重复率达到1GHz,以满足未来高速远距离光纤量子通信系统的需求。

中文关键词: 红外单光子探测;高速量子通信;雪崩光电二极管;并行阵列;信噪比

英文摘要: Single photon detection is the basement of future high-speed quantum secure communication system, and it is the most cucial device in quantum information technology. The infrared single photon detection is the focal point in the optic fiber quantum communication.But because the fiber has the natural loss of polarization model dispersion effect and the quality of quantum entanglement falls down with the transmission channel induced by environment.So the transmission reliability and speed and distance of optic fiber quantum communication are servely limited, and it need high performance single photon detection. Therefore,the project is mainly aimed at the target of infrared single photon detection technology to do research,we propose a new type parallel APD(Avalanche Photo Diode)structure detection method. It can resolve the contradiction between decreasing dead time /increasing counting rate and reducing after-pulse probability /reducing the ratio of the dark count. And on this basis we propose high speed GHz sine wave gate-control and low-pass filtering detection method to process high frequency weak signal, so the signal to noise ratio is improved. And as the same time, we propose to adopt a series of electronics detection methods to improve the detection sensitivity.And the self-adoptive electrical level adj

英文关键词: Infrared single photon detection;high speed quantum communication;Avalanche Photo Diode;parallel array;signal noise ratio

成为VIP会员查看完整内容
0

相关内容

《5G 毫米波赋能 8K 视频制作》未来移动通信论坛
专知会员服务
11+阅读 · 2022年4月15日
《6G总体白皮书》未来移动通信论坛
专知会员服务
39+阅读 · 2022年4月15日
《零功耗通信》未来移动通信论坛
专知会员服务
18+阅读 · 2022年4月15日
《5G/6G毫米波测试技术白皮书》未来移动通信论坛
专知会员服务
16+阅读 · 2022年4月15日
6G物理层AI关键技术白皮书(2022)
专知会员服务
42+阅读 · 2022年3月21日
严新平院士:智能交通发展的现状、挑战与展望
专知会员服务
30+阅读 · 2022年3月17日
专知会员服务
21+阅读 · 2021年8月23日
专知会员服务
42+阅读 · 2021年2月8日
量子信息技术研究现状与未来
专知会员服务
40+阅读 · 2020年10月11日
MIT科学家制造了量子龙卷风
机器之心
0+阅读 · 2022年1月14日
小芯片大安全:数字隔离器的前世今生
中国科学院自动化研究所
0+阅读 · 2021年3月16日
自动驾驶高精度定位如何在复杂环境进行
智能交通技术
18+阅读 · 2019年9月27日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
2+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2022年4月17日
Arxiv
14+阅读 · 2020年12月17日
Arxiv
10+阅读 · 2020年6月12日
小贴士
相关VIP内容
《5G 毫米波赋能 8K 视频制作》未来移动通信论坛
专知会员服务
11+阅读 · 2022年4月15日
《6G总体白皮书》未来移动通信论坛
专知会员服务
39+阅读 · 2022年4月15日
《零功耗通信》未来移动通信论坛
专知会员服务
18+阅读 · 2022年4月15日
《5G/6G毫米波测试技术白皮书》未来移动通信论坛
专知会员服务
16+阅读 · 2022年4月15日
6G物理层AI关键技术白皮书(2022)
专知会员服务
42+阅读 · 2022年3月21日
严新平院士:智能交通发展的现状、挑战与展望
专知会员服务
30+阅读 · 2022年3月17日
专知会员服务
21+阅读 · 2021年8月23日
专知会员服务
42+阅读 · 2021年2月8日
量子信息技术研究现状与未来
专知会员服务
40+阅读 · 2020年10月11日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
2+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
微信扫码咨询专知VIP会员