论文题目:Temporal Alignment Prediction for Supervised Representation Learning and Few-Shot Sequence Classification

作者:苏冰,文继荣;通讯作者:文继荣

论文概述:序列距离通过时间对齐处理具有不同长度和局部方差的序列。大多数序列对齐方法通过在预定义的可行对齐约束下解决优化问题来推断最优对齐,这不仅耗时,而且使端到端序列学习变得难以处理。在本文中,我们提出了一种可学习的序列距离,称为时序对齐预测 (TAP)。TAP 采用轻量级卷积神经网络直接预测两个序列之间的最优对齐方式,因此只需要前向计算,推理过程中不涉及优化。TAP 可以应用于不同的基于距离的机器学习任务。对于有监督的序列表示学习,我们展示了用各种度量学习损失训练的 TAP 以更快的推理速度实现了具有竞争力的性能。对于小样本动作分类,我们将 TAP 作为基于度量学习的episode训练范式中的距离度量。这种简单的策略取得了与最先进的小样本动作识别方法接近的结果。

https://openreview.net/forum?id=p3DKPQ7uaAi

成为VIP会员查看完整内容
20

相关内容

ICLR,全称为「International Conference on Learning Representations」(国际学习表征会议),2013 年才刚刚成立了第一届。这个一年一度的会议虽然今年才办到第五届,但已经被学术研究者们广泛认可,被认为「深度学习的顶级会议」。 ICLR由位列深度学习三大巨头之二的 Yoshua Bengio 和 Yann LeCun 牵头创办。 ICLR 希望能为深度学习提供一个专业化的交流平台。但实际上 ICLR 不同于其它国际会议,得到好评的真正原因,并不只是他们二位所自带的名人光环,而在于它推行的 Open Review 评审制度。
【ICLR2022】图神经网络复杂时间序列建模
专知会员服务
89+阅读 · 2022年4月15日
【ICLR2022】序列生成的目标侧数据增强
专知会员服务
22+阅读 · 2022年2月14日
专知会员服务
15+阅读 · 2021年9月15日
专知会员服务
31+阅读 · 2021年7月15日
专知会员服务
38+阅读 · 2021年5月16日
【NeurIPS'21】从典型相关分析到自监督图表示学习
【ICLR2022】序列生成的目标侧数据增强
专知
0+阅读 · 2022年2月14日
将对比学习扩展到监督式场景
TensorFlow
1+阅读 · 2021年7月20日
图上的归纳表示学习
科技创新与创业
23+阅读 · 2017年11月9日
国家自然科学基金
4+阅读 · 2015年12月31日
国家自然科学基金
4+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
7+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
3+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Arxiv
0+阅读 · 2022年4月19日
Arxiv
0+阅读 · 2022年4月17日
Arxiv
11+阅读 · 2021年2月17日
Arxiv
19+阅读 · 2020年7月21日
Arxiv
30+阅读 · 2019年3月13日
A Comprehensive Survey on Graph Neural Networks
Arxiv
21+阅读 · 2019年1月3日
VIP会员
相关VIP内容
相关基金
国家自然科学基金
4+阅读 · 2015年12月31日
国家自然科学基金
4+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
7+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
3+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
相关论文
微信扫码咨询专知VIP会员