We analyze simulated annealing (SA) for simple randomized instances of the Traveling Salesperson Problem. Our analysis shows that the theoretically optimal cooling schedule of Hajek explores members of the solution set which are in expectation far from the global optimum. We obtain a lower bound on the expected length of the final tour obtained by SA on these random instances. In addition, we also obtain an upper bound on the expected value of its variance. These bounds assume that the Markov chain that describes SA is stationary, a situation that does not truly hold in practice. Hence, we also formulate conditions under which the bounds extend to the nonstationary case. These bounds are obtained by comparing the tour length distribution to a related distribution. We furthermore provide numerical evidence for a stochastic dominance relation that appears to exist between these two distributions, and formulate a conjecture in this direction. If proved, this conjecture implies that SA stays far from the global optimum with high probability when executed for any sub-exponential number of iterations. This would show that SA requires at least exponentially many iterations to reach a global optimum with nonvanishing probability.
翻译:我们分析对《旅行销售商问题》的简单随机案例的模拟肛交(SA) 。 我们的分析表明,Hajek的理论上最佳冷却计划探索了与全球最佳情况相去甚远的解决方案组成员。 我们从这些随机情况中获得了对最后游览的预期长度的较低约束。 此外, 我们还获得了对其差异的预期值的上限。 这些界限假定,描述SA的Markov链条是静止的,这种情况在实际中并不真正存在。 因此,我们还制定了将界限延伸到非静止情况的条件。 这些界限是通过将旅行长度分布与相关分布进行比较而获得的。 我们还为这两种分布之间似乎存在的随机支配关系提供了数字证据,并朝这个方向作出推导。 如果被证实,这种推论意味着SA远离全球最佳状态,在对任何次衰减的反复次数执行时,其概率很高。 这将表明,SA至少需要大量指数性循环才能达到全球最佳的概率。