Medical image segmentation aims to automatically extract anatomical or pathological structures in the human body. Most objects or regions of interest are of similar patterns. For example, the relative location and the relative size of the lung and the kidney differ little among subjects. Incorporating these morphology rules as prior knowledge into the segmentation model is believed to be an effective way to enhance the accuracy of the segmentation results. Motivated by this, we propose in this work the Topology-Preserving Segmentation Network (TPSN) which can predict segmentation masks with the same topology prescribed for specific tasks. TPSN is a deformation-based model that yields a deformation map through an encoder-decoder architecture to warp the template masks into a target shape approximating the region to segment. Comparing to the segmentation framework based on pixel-wise classification, deformation-based segmentation models that warp a template to enclose the regions are more convenient to enforce geometric constraints. In our framework, we carefully design the ReLU Jacobian regularization term to enforce the bijectivity of the deformation map. As such, the predicted mask by TPSN has the same topology as that of the template prior mask.


翻译:医学图像分解旨在自动提取人体中的解剖或病理结构。 大多数感兴趣的对象或区域都具有类似的模式。 例如,肺和肾的相对位置和相对大小在不同的对象之间差别不大。 将这些形态规则作为先前的知识纳入分解模型被认为是提高分解结果准确性的有效方法。 我们为此在这项工作中提议, 地形- 保存分解网络( TPSN) 能够用为特定任务规定的同一表层来预测分解面罩。 TPSN 是一种基于变形的模型, 通过一个编码器- 解析器结构来生成一个变形图, 将模版面转换成一个目标形状, 将区域与部分相近。 比较基于像学分类的分解框架, 基于变形的分解模型, 将一个模板作为附加区域比较比较起来比较方便执行几何限制。 我们仔细设计了RELU Jacobian 正规化术语, 以强制执行变形图的双向性。 正如SNATP 先前的模版一样, 也预测了这个顶部的顶部。

0
下载
关闭预览

相关内容

Networking:IFIP International Conferences on Networking。 Explanation:国际网络会议。 Publisher:IFIP。 SIT: http://dblp.uni-trier.de/db/conf/networking/index.html
NeurlPS 2022 | 自然语言处理相关论文分类整理
专知会员服务
50+阅读 · 2022年10月2日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
79+阅读 · 2020年7月26日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
征稿 | International Joint Conference on Knowledge Graphs (IJCKG)
开放知识图谱
2+阅读 · 2022年5月20日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
会议交流 | IJCKG: International Joint Conference on Knowledge Graphs
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
国家自然科学基金
0+阅读 · 2017年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
Arxiv
0+阅读 · 2022年11月30日
Arxiv
23+阅读 · 2022年2月24日
Arxiv
10+阅读 · 2021年2月26日
Arxiv
10+阅读 · 2021年2月18日
VIP会员
相关VIP内容
NeurlPS 2022 | 自然语言处理相关论文分类整理
专知会员服务
50+阅读 · 2022年10月2日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
79+阅读 · 2020年7月26日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
相关资讯
征稿 | International Joint Conference on Knowledge Graphs (IJCKG)
开放知识图谱
2+阅读 · 2022年5月20日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
会议交流 | IJCKG: International Joint Conference on Knowledge Graphs
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
相关基金
国家自然科学基金
0+阅读 · 2017年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
Top
微信扫码咨询专知VIP会员