Medical image segmentation aims to automatically extract anatomical or pathological structures in the human body. Most objects or regions of interest are of similar patterns. For example, the relative location and the relative size of the lung and the kidney differ little among subjects. Incorporating these morphology rules as prior knowledge into the segmentation model is believed to be an effective way to enhance the accuracy of the segmentation results. Motivated by this, we propose in this work the Topology-Preserving Segmentation Network (TPSN) which can predict segmentation masks with the same topology prescribed for specific tasks. TPSN is a deformation-based model that yields a deformation map through an encoder-decoder architecture to warp the template masks into a target shape approximating the region to segment. Comparing to the segmentation framework based on pixel-wise classification, deformation-based segmentation models that warp a template to enclose the regions are more convenient to enforce geometric constraints. In our framework, we carefully design the ReLU Jacobian regularization term to enforce the bijectivity of the deformation map. As such, the predicted mask by TPSN has the same topology as that of the template prior mask.
翻译:医学图像分解旨在自动提取人体中的解剖或病理结构。 大多数感兴趣的对象或区域都具有类似的模式。 例如,肺和肾的相对位置和相对大小在不同的对象之间差别不大。 将这些形态规则作为先前的知识纳入分解模型被认为是提高分解结果准确性的有效方法。 我们为此在这项工作中提议, 地形- 保存分解网络( TPSN) 能够用为特定任务规定的同一表层来预测分解面罩。 TPSN 是一种基于变形的模型, 通过一个编码器- 解析器结构来生成一个变形图, 将模版面转换成一个目标形状, 将区域与部分相近。 比较基于像学分类的分解框架, 基于变形的分解模型, 将一个模板作为附加区域比较比较起来比较方便执行几何限制。 我们仔细设计了RELU Jacobian 正规化术语, 以强制执行变形图的双向性。 正如SNATP 先前的模版一样, 也预测了这个顶部的顶部。