The new graph parameter twin-width, introduced by Bonnet, Kim, Thomass e and Watrigant in 2020, allows for an FPT algorithm for testing all FO properties of graphs. This makes classes of efficiently bounded twin-width attractive from the algorithmic point of view. In particular, classes of efficiently bounded twin-width include proper interval graphs, and (as digraphs) posets of width k. Inspired by an existing generalization of interval graphs into so-called k-thin graphs, we define a new class of proper k-mixed-thin graphs which largely generalizes proper interval graphs. We prove that proper k-mixed-thin graphs have twin-width linear in k, and that a slight subclass of k-mixed-thin graphs is transduction-equivalent to posets of width k' such that there is a quadratic-polynomial relation between k and k'. In addition to that, we also give an abstract overview of the so-called red potential method which we use to prove our twin-width bounds.
翻译:由 Bonnet、 Kim、 Thomas e 和 Watrigant 于 2020 年推出的新图形参数双宽, 允许使用FPT 算法来测试图表的所有 FOT 属性。 这样, 从算法的角度, 高效捆绑的双宽的等级具有吸引力。 特别是, 高效捆绑的双宽的等级包括适当的间距图, 以及宽度的( 以词组形式) 。 受所谓的 k- hin 图形中的间距图的概括化启发, 我们定义了一种新的适当的 k- mixed- thin 图形, 基本上将适当的间距图形概括化 。 我们证明, k- mixed- thin 图形在 k 中具有双维线性, k- mixed- thin 图形的微小亚级与 宽度的外形相等值。 因此 k 和 k- k 之间的四边- pynomial 关系, 我们还对所谓的红度方法进行了抽象的概述, 我们用来证明双边框。