There are a lot of recent works on generalizing the spectral theory of graphs and graph partitioning to hypergraphs. There have been two broad directions toward this goal. One generalizes the notion of graph conductance to hypergraph conductance [LM16, CLTZ18]. In the second approach one can view a hypergraph as a simplicial complex and study its various topological properties [LM06, MW09, DKW16, PR17] and spectral properties [KM17, DK17, KO18a, KO18b, Opp20]. In this work, we attempt to bridge these two directions of study by relating the spectrum of up-down walks and swap-walks on the simplicial complex to hypergraph expansion. In surprising contrast to random-walks on graphs, we show that the spectral gap of swap-walks can not be used to infer any bounds on hypergraph conductance. For the up-down walks, we show that spectral gap of walks between levels $m, l$ satisfying $1 < m < l$ can not be used to bound hypergraph expansion. We give a Cheeger-like inequality relating the spectral of walks between level 1 and $l$ to hypergraph expansion. Finally, we also give a construction to show that the well-studied notion of link expansion in simplicial complexes can not be used to bound hypergraph expansion in a Cheeger like manner.
翻译:将图形和图分区的光谱理论与图和图分割法的光谱理论归纳为高光学, 近期有许多工作要研究。 朝这个目标有两大方向。 一个将图形导导概念概括为高光导[ LM16、 CLTZ18] 。 在第二个方法中, 人们可以将高光谱视为简单综合体, 并研究其各种地形特性[LM06、 MW09、 DKW16、 DKW16、 DKW17] 和光谱属性[ KM17、 DK17、 KO18a、 KO18b、 Opp20] 。 在这个工作中, 我们试图弥合这两个研究方向, 将平光学行走和光学演道的频谱与超光学扩展联系起来。 与图上的随机行迹相比, 我们无法用交换行走的光谱差距来推断高光谱行距。 比如说, 美元行道的光谱行距距离, 满足了1 美元 < iber l$ 的平面行距不能用于高光谱扩展 。 最后, 显示高光谱结构 的扩展 。