Robust Markov Decision Processes (MDPs) are getting more attention for learning a robust policy which is less sensitive to environment changes. There are an increasing number of works analyzing sample-efficiency of robust MDPs. However, most works study robust MDPs in a model-based regime, where the transition probability needs to be estimated and requires $\mathcal{O}(|\mathcal{S}|^2|\mathcal{A}|)$ storage in memory. A common way to solve robust MDPs is to formulate them as a distributionally robust optimization (DRO) problem. However, solving a DRO problem is non-trivial, so prior works typically assume a strong oracle to obtain the optimal solution of the DRO problem easily. To remove the need for an oracle, we first transform the original robust MDPs into an alternative form, as the alternative form allows us to use stochastic gradient methods to solve the robust MDPs. Moreover, we prove the alternative form still preserves the role of robustness. With this new formulation, we devise a sample-efficient algorithm to solve the robust MDPs in a model-free regime, from which we benefit lower memory space $\mathcal{O}(|\mathcal{S}||\mathcal{A}|)$ without using the oracle. Finally, we validate our theoretical findings via numerical experiments and show the efficiency to solve the alternative form of robust MDPs.


翻译:(mDPs) 学习一种对环境变化不太敏感的稳健政策越来越受到更多关注。 分析稳健的MDPs抽样效率的工作越来越多。 然而, 多数工作在基于模型的制度下研究稳健的MDPs, 需要估算过渡概率, 并需要在记忆中存储$\mathcal{O}( mathcal{S ⁇ 2 ⁇ mathcal{A ⁇ }) 。 解决稳健的MDPs的一个共同方式是将它们发展成一个分布式强力优化( DRO)问题。 然而, 解决DRO问题不是三重力的, 所以先前的工作通常会假设一个强力的神器, 以便很容易地获得对DRO问题的最佳解决方案。 为了消除对一个神器的需要, 我们首先将原来的稳健健的MDPs 变成一种替代形式, 因为替代形式允许我们使用随机的梯变梯度梯度方法来解决稳健的MDPsurity( DRO) 。 此外, 我们证明另一种形式仍然保留稳健的功能。 。 但是, 我们用这个新的配方, 我们设计一个节制的节制的节制的节制算算算算算算算算算法, 来解决稳健健健健健健健健健健的MDPs mDPs malmacalalalal___ lax lax froalalalalal fors froalalal proal ps fal proal pal proal

0
下载
关闭预览

相关内容

不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
73+阅读 · 2022年6月28日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
30+阅读 · 2019年10月17日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
灾难性遗忘问题新视角:迁移-干扰平衡
CreateAMind
17+阅读 · 2019年7月6日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【推荐】GAN架构入门综述(资源汇总)
机器学习研究会
10+阅读 · 2017年9月3日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Arxiv
0+阅读 · 2023年3月24日
Adversarial Mutual Information for Text Generation
Arxiv
13+阅读 · 2020年6月30日
VIP会员
相关VIP内容
不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
73+阅读 · 2022年6月28日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
30+阅读 · 2019年10月17日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
灾难性遗忘问题新视角:迁移-干扰平衡
CreateAMind
17+阅读 · 2019年7月6日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【推荐】GAN架构入门综述(资源汇总)
机器学习研究会
10+阅读 · 2017年9月3日
相关基金
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员