Overdetermined systems of first kind integral equations appear in many applications. When the right-hand side is discretized, the resulting finite-data problem is ill-posed and admits infinitely many solutions. We propose a numerical method to compute the minimal-norm solution in the presence of boundary constraints. The algorithm stems from the Riesz representation theorem and operates in a reproducing kernel Hilbert space. Since the resulting linear system is strongly ill-conditioned, we construct a regularization method depending on a discrete parameter. It is based on the expansion of the minimal-norm solution in terms of the singular functions of the integral operator defining the problem. Two estimation techniques are tested for the automatic determination of the regularization parameter, namely, the discrepancy principle and the L-curve method. Numerical results concerning two artificial test problems demonstrate the excellent performance of the proposed method. Finally, a particular model typical of geophysical applications, which reproduces the readings of a frequency domain electromagnetic induction device, is investigated. The results show that the new method is extremely effective when the sought solution is smooth, but gives significant information on the solution even for non-smooth solutions.
翻译:在很多应用中都出现了第一种类型的超定整体方程式系统。 当右侧被分解时, 由此产生的有限数据问题是不正确的, 并承认了无限多的解决方案。 我们建议了一个数字方法, 在存在边界限制的情况下, 计算最小的北向解决方案。 算法源自Riesz 代表的理论, 并在复制内核 Hilbert 空间中运行。 由于由此形成的线性系统条件非常差, 我们根据离散参数构建了一种正规化方法。 它基于在定义问题的完整操作者独一功能方面扩大最低温性解决方案。 测试了两种估算技术, 以自动确定身份规范参数, 即差异原则和L- 曲线方法。 两个人工测试问题的数字结果显示了拟议方法的出色性能。 最后, 正在调查一个地球物理应用典型的模型, 其复制了频域电磁感应感应装置的读数。 结果表明, 新方法在所寻求的解决方案是平稳的时非常有效的, 但也给出了有关解决方案的重要信息, 即使是非移动解决方案 。