We provide a complete pipeline for the detection of patterns of interest in an image. In our approach, the patterns are assumed to be adequately modeled by a known template, and are located at unknown positions and orientations that we aim at retrieving. We propose a continuous-domain additive image model, where the analyzed image is the sum of the patterns to localize and a background with self-similar isotropic power-spectrum. We are then able to compute the optimal filter fulfilling the SNR criterion based on one single template and background pair: it strongly responds to the template while being optimally decoupled from the background model. In addition, we constrain our filter to be steerable, which allows for a fast template detection together with orientation estimation. In practice, the implementation requires to discretize a continuous-domain formulation on polar grids, which is performed using quadratic radial B-splines. We demonstrate the practical usefulness of our method on a variety of template approximation and pattern detection experiments. We show that the detection performance drastically improves when we exploit the statistics of the background via its power-spectrum decay, which we refer to as spectral-shaping. The proposed scheme outperforms state-of-the-art steerable methods by up to 50% of absolute detection performance.
翻译:我们提供了一个完整的管道,用于检测图像中感兴趣的模式。 在我们的方法中,这些模式被假定为一个已知模板的模型,是适当的模型,并且位于我们旨在检索的未知位置和方向。 我们提议了一个连续域添加图像模型, 所分析的图像是本地化模式的总和, 以及具有自相异的等离子光谱的背景。 然后, 我们就可以根据单一模板和背景配对来计算出符合 SNR 标准的最佳过滤器: 它对模板反应强烈, 同时又与背景模型进行最佳脱钩。 此外, 我们限制我们的过滤器可以被控制, 以便快速检测模板和方向估计。 在实际中, 执行需要将极电网的连续成形配方相分离, 它使用四分立的光谱B- 线进行。 我们在各种模板近似和模式检测实验中展示了我们的方法的实用性能。 我们表明, 当我们通过电源光谱检测模型的绝对性能检测模型来利用背景统计数据时, 检测性能会大幅改善。 我们建议通过光谱仪图显示50度的状态, 我们用光谱式检测方法将光谱显示为状态。