Interacting particle or agent systems that display a rich variety of collection motions are ubiquitous in science and engineering. A fundamental and challenging goal is to understand the link between individual interaction rules and collective behaviors. In this paper, we study the data-driven discovery of distance-based interaction laws in second-order interacting particle systems. We propose a learning approach that models the latent interaction kernel functions as Gaussian processes, which can simultaneously fulfill two inference goals: one is the nonparametric inference of interaction kernel function with the pointwise uncertainty quantification, and the other one is the inference of unknown parameters in the non-collective forces of the system. We formulate learning interaction kernel functions as a statistical inverse problem and provide a detailed analysis of recoverability conditions, establishing that a coercivity condition is sufficient for recoverability. We provide a finite-sample analysis, showing that our posterior mean estimator converges at an optimal rate equal to the one in the classical 1-dimensional Kernel Ridge regression. Numerical results on systems that exhibit different collective behaviors demonstrate efficient learning of our approach from scarce noisy trajectory data.
翻译:显示大量收集动作的互换粒子或代理系统在科学和工程方面无处不在,一个根本性和具有挑战性的目标是理解个人互动规则和集体行为之间的联系。在本文中,我们研究了在二级互动粒子系统中由数据驱动的远程互动法发现。我们提出了一个学习方法,将潜在互动内核功能作为高斯进程的模式,这可以同时实现两个推断目标:一个是互动内核功能与点向不确定性量化的不参数的非参数推论,另一个是系统非集合力量中未知参数的推论。我们将学习互动内核功能作为统计反向问题,对可恢复条件进行详细分析,确定共振状态足以恢复。我们提供了定量抽样分析,表明我们的后端意味着估计值以与古典1度Kernel Ridge回归率相同的最佳速度趋同。在显示不同集体行为、显示我们从稀缺的轨道数据中有效学习方法的系统上得出的数值结果。