We consider the weak target detection problem with unknown parameter in colocated multiple-input multiple-output (MIMO) radar. To cope with the sheer amount of data for large-size systems, a multi-bit quantizer is utilized in the sampling process. As a low-complexity alternative to classic generalized likelihood ratio test (GLRT) for quantized data, we propose the multi-bit detector on Rao test with a closed-form test statistic, whose theoretical asymptotic distribution is provided to generalize the actual detection performance. Besides, we refine the design of quantizer by optimized quantization thresholds, which are obtained resorting to the popular particle swarm optimization algorithmthe (PSOA). The simulation is conducted to demonstrate the performance variations of detectors based on unquantized and quantized data. The numerical results corroborate our theoretical analyses and show that the performance with 3-bit quantization approaches the case without quantization.


翻译:我们考虑的是位于同一地点的多投入多产出(MIMO)雷达中未知参数的薄弱目标探测问题。 为了应对大型系统的数据数量之大,在取样过程中使用了多位量的量化器。作为典型通用概率比测试(GLRT)的低复杂度替代品,我们建议用封闭式测试统计数据来取代典型通用概率比测试(GLRT),在Rao测试上使用多位量检测器,该测试器的理论性能分布将普遍化实际检测性能。此外,我们通过优化量化阈值来改进量化器的设计,该阈值将使用流行的粒子温优化算法(PSOA)获得。进行模拟是为了展示基于未量化和量化数据的探测器性能变化。数字结果证实了我们的理论分析,并表明3位四分法的性能在没有量化的情况下接近案件。

0
下载
关闭预览

相关内容

Linux导论,Introduction to Linux,96页ppt
专知会员服务
82+阅读 · 2020年7月26日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
美国化学会 (ACS) 北京代表处招聘
知社学术圈
11+阅读 · 2018年9月4日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2021年7月28日
VIP会员
相关资讯
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
美国化学会 (ACS) 北京代表处招聘
知社学术圈
11+阅读 · 2018年9月4日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员