This paper presents a topology optimization approach for the surface flows on variable design domains. Via this approach, the matching between the pattern of a surface flow and the 2-manifold used to define the pattern can be optimized, where the 2-manifold is implicitly defined on another fixed 2-manifold named as the base manifold. The fiber bundle topology optimization approach is developed based on the description of the topological structure of the surface flow by using the differential geometry concept of the fiber bundle. The material distribution method is used to achieve the evolution of the pattern of the surface flow. The evolution of the implicit 2-manifold is realized via a homeomorphous map. The design variable of the pattern of the surface flow and that of the implicit 2-manifold are regularized by two sequentially implemented surface-PDE filters. The two surface-PDE filters are coupled, because they are defined on the implicit 2-manifold and base manifold, respectively. The surface Navier-Stokes equations, defined on the implicit 2-manifold, are used to describe the surface flow. The fiber bundle topology optimization problem is analyzed using the continuous adjoint method implemented on the first-order Sobolev space. Several numerical examples have been provided to demonstrate this approach, where the combination of the viscous dissipation and pressure drop is used as the design objective.
翻译:本文展示了对可变设计域表层流的地形优化方法。 通过这个方法, 可以优化地表流模式和用于定义图案的2个平面图之间的匹配, 将2个双层图案以另一个固定的2个平面图案( 称为基体多元) 隐含定义。 纤维捆绑表层优化方法是根据对表层流的地形结构的描述而开发的, 使用纤维捆绑的差别几何概念。 物质分布方法用于实现表层流模式的演变。 隐含的2个平面图的演变是通过自成型的地图实现的。 表面流和隐含的2个平面图案的图案设计变量由两个顺序实施的地表- PDE 过滤器规范化。 两个平面- PDE 优化法是结合的, 因为它们分别使用隐含的2个平面图案概念概念概念。 以表面导航- Stokes 方程式的公式来描述表层流。 纤维捆绑2个平面图的演化优化问题是用连续的数位组合方法来分析的。 。 在多个平面上使用的多层设计方法中, 以演示中所使用的数字组合式组合方法是用来演示。 。