Data driven optimization and machine learning based performance diagnostics of radio access networks entails significant challenges arising not only from the nature of underlying data sources but also due to complex spatio-temporal relationships and interdependencies between cells due to user mobility and varying traffic patterns. We discuss how to study these configuration and performance management data sets and identify relationships between cells in terms of key performance indicators using multivariate analysis. To this end, we leverage a novel framework based on canonical correlation analysis (CCA), which is a highly effective method for not only dimensionality reduction but also for analyzing relationships across different sets of multivariate data. As a case study, we discuss energy saving use-case based on cell shutdown in commercial cellular networks, where we apply CCA to analyze the impact of capacity cell shutdown on the KPIs of coverage cell in the same sector. Data from LTE Network is used to analyzed example case. We conclude that CCA is a viable approach for identifying key relationships not only between network planning and configuration data, but also dynamic performance data, paving the way for endeavors such as dimensionality reduction, performance analysis, and root cause analysis for performance diagnostics.


翻译:由数据驱动的优化和基于机器的无线电接入网络性能诊断,不仅由于基本数据源的性质,而且由于由于用户流动性和交通模式不同,各单元之间复杂的时空关系和相互依存关系,都带来了重大挑战。我们讨论了如何研究这些配置和业绩管理数据集,并用多种变量分析关键业绩指标,确定各单元之间的关系。为此,我们利用基于能力相关性分析的新框架(CCA),这是一个非常有效的方法,不仅用于降低维度,而且用于分析不同系列多变量数据之间的关系。作为案例研究,我们讨论了基于商业移动电话网络细胞关闭的节能使用案例,我们在此过程中应用共同国家评估来分析单元关闭对同一部门覆盖单元的KPI的影响。LTE网络的数据用于分析实例案例。我们的结论是,CC是一种可行的方法,不仅用于确定网络规划和配置数据之间的关键关系,而且用于动态性业绩数据,为进行诸如减少维度、绩效分析以及绩效分析的根底分析等工作铺平了道路。

0
下载
关闭预览

相关内容

因果图,Causal Graphs,52页ppt
专知会员服务
248+阅读 · 2020年4月19日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
165+阅读 · 2020年3月18日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
A Survey on Data Augmentation for Text Classification
Arxiv
13+阅读 · 2021年5月25日
A Survey on Edge Intelligence
Arxiv
52+阅读 · 2020年3月26日
Arxiv
26+阅读 · 2018年2月27日
VIP会员
相关VIP内容
因果图,Causal Graphs,52页ppt
专知会员服务
248+阅读 · 2020年4月19日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
165+阅读 · 2020年3月18日
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员