项目名称: 全溶液法制备低电压有机薄膜晶体管集成电路的研究

项目编号: No.61274083

项目类型: 面上项目

立项/批准年度: 2013

项目学科: 无线电电子学、电信技术

项目作者: 郭小军

作者单位: 上海交通大学

项目金额: 80万元

中文摘要: 对可溶性有机半导体、绝缘、以及导电功能材料的研究,催生了用传统印刷技术制造各种有机电子信息器件的探索。全溶液法加工低电压、高性能的有机薄膜晶体管(organic thin-film transistor, OTFT)器件是印刷有机电子由基础材料及器件的研究向集成化电路与系统应用发展的关键。为此目标,需要实现短沟道、降低寄生电容、减小亚阈值摆幅等,同时不影响器件的可集成性以及迁移率、开关比等性能。本项目拟通过研究溶液法工艺对OTFT器件性能影响的作用机理,利用溶液法的工艺特征,在常规的溶液法/印刷工艺条件约束下实现低电压、短沟道、自对准栅结构的OTFT器件;将从材料、器件设计与工艺方面综合考虑,优化p型OTFT的性能,在此基础上,以提高电路的噪声容限为目标研究全p型OTFT逻辑电路的设计与物理实现。最后形成器件与电路的设计理论与物理实现方案,为印刷有机电子向集成化电路与系统应用发展奠定基础。

中文关键词: 印刷电子;柔性电子;有机薄膜晶体管;低电压;集成电路

英文摘要: The development of soluble organic semiconducting, dielectric and conductive materials has enabled the fabrication of organic electronic information devices with printing techniques. All solution processed low voltage, high performance organic thin-film transistors (OTFTs) are required to achieve printable integrated circuits and systems from the research of fundamental materials and devices. For that, short channels, low parasitic capacitances and small subthreshold swings need to be realized with solution based/printing processes without impacting other device performance parameters such as mobility and ON/OFF current ratio. This project will start from the investigation of the influence of the solution processes on the OTFT device performance, and then develop low voltage, short channel and self-aligned gate structure OTFTs under the constraints of the solution-based/printing processes. The project will focus on improving the performance of p-type OTFT devices combining considerations of materials, device design and processes, and based on that, work on the design and processes of all-p-type logic circuit for high enough noise margin. It is expected that the design theory and physical implementation method of OTFTs and circuits can finally be developed to form the basis for achieving integrated circuits and s

英文关键词: Printed electronics;flexible electronics;organic thin-film transistor;low voltage;integrated circuit

成为VIP会员查看完整内容
0

相关内容

《5G/6G毫米波测试技术白皮书》未来移动通信论坛
专知会员服务
14+阅读 · 2022年4月15日
深度神经网络FPGA设计进展、实现与展望
专知会员服务
33+阅读 · 2022年3月21日
基于 5G 通信技术的无人机立体覆盖网络白皮书
专知会员服务
51+阅读 · 2022年3月20日
专知会员服务
41+阅读 · 2021年9月7日
专知会员服务
37+阅读 · 2021年5月9日
专知会员服务
31+阅读 · 2021年5月7日
专知会员服务
17+阅读 · 2020年12月23日
专知会员服务
18+阅读 · 2020年9月14日
阿里巴巴达摩院发布「2020十大科技趋势」
专知会员服务
105+阅读 · 2020年1月2日
CCCF专栏 | 摩尔定律死了,摩尔定律万岁
中国计算机学会
0+阅读 · 2022年4月6日
小芯片大安全:数字隔离器的前世今生
中国科学院自动化研究所
0+阅读 · 2021年3月16日
【材料课堂】TEM复杂电子衍射花样的标定原理
材料科学与工程
38+阅读 · 2019年4月12日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Arxiv
0+阅读 · 2022年4月18日
Arxiv
0+阅读 · 2022年4月17日
小贴士
相关VIP内容
《5G/6G毫米波测试技术白皮书》未来移动通信论坛
专知会员服务
14+阅读 · 2022年4月15日
深度神经网络FPGA设计进展、实现与展望
专知会员服务
33+阅读 · 2022年3月21日
基于 5G 通信技术的无人机立体覆盖网络白皮书
专知会员服务
51+阅读 · 2022年3月20日
专知会员服务
41+阅读 · 2021年9月7日
专知会员服务
37+阅读 · 2021年5月9日
专知会员服务
31+阅读 · 2021年5月7日
专知会员服务
17+阅读 · 2020年12月23日
专知会员服务
18+阅读 · 2020年9月14日
阿里巴巴达摩院发布「2020十大科技趋势」
专知会员服务
105+阅读 · 2020年1月2日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
微信扫码咨询专知VIP会员