项目名称: 高通量高灵敏度等离激元共振增强OI-RD光学生物传感方法及应用研究

项目编号: No.61505032

项目类型: 青年科学基金项目

立项/批准年度: 2016

项目学科: 无线电电子学、电信技术

项目作者: 费义艳

作者单位: 复旦大学

项目金额: 23万元

中文摘要: 生物分子相互作用的检测是生命科学领域研究的重要内容。药物筛选、组学研究等需要高通量、高灵敏检测生物分子相互作用,现有无标记检测仪器和方法还不能充分满足研究要求。斜入射光反射差法(OI-RD)是一种光学生物传感方法,能够高通量、无标记、实时检测上万个生物分子相互作用,但检测灵敏度有待进一步提高。本项目将采用表面等离激元共振增强效应来提高OI-RD的灵敏度。将通过研究表面等离激元共振增强OI-RD技术、系统分析噪声来源及其对检测极限的影响等,研究同时具备高通量(同时检测>10,000个生物分子)和高灵敏度(检测极限10^(-7)RIU,Refractive Index Unit)的无标记光学生物传感方法,为药物筛选、组学研究等领域提供新型生物学检测仪器。

中文关键词: 光学生物传感器;生物芯片;表面等离激元传感;高通量

英文摘要: Detection of biomolecular interactions is important for the deep understanding and fast development of life sciences. High-throughput and high-sensitivity detection of biomolecular interactions, which is required for the development of drug screening and omics studies, can’t be fully satisfied by currently available label-free instruments. OI-RD (Oblique-Incidence Reflectivity Difference), one of optical biosensors, provides high-throughput label-free in-situ and real-time characterization for biomolecular interactions. While the sensitivity of OI-RD needs to be increased greatly to meet requirements of drug screening and omics studies. We propose to increase OI-RD sensitivity based on enhancement effect of surface plasmon resonance. Through the study of surface plasmon resonance enhanced OI-RD and sources of noise and their effects on OI-RD detection limit, we will develop a novel optical biosensor, providing both high-throughput (simultaneous detection of >10,000 biomolecular interactions) and high-sensitivity (detection limit 10^(-7)RIU, Refractive Index Unit), which will provide novel solutions for drug screening and omics studies.

英文关键词: optical biosensor;biochip;surface plasmon resonance sensing;high-throughput

成为VIP会员查看完整内容
0

相关内容

【AAAI2022】基于渐进式增强学习的人脸伪造图像检测
专知会员服务
21+阅读 · 2022年1月19日
Nat. Mach. Intell. | 分子表征的几何深度学习
专知会员服务
24+阅读 · 2021年12月26日
专知会员服务
42+阅读 · 2021年9月7日
专知会员服务
31+阅读 · 2021年7月26日
专知会员服务
31+阅读 · 2021年7月25日
专知会员服务
26+阅读 · 2021年4月2日
机器学习在材料科学中的应用综述,21页pdf
专知会员服务
48+阅读 · 2019年9月24日
把DNA换成RNA,有望创造强大、可持续的生物计算机
大数据文摘
0+阅读 · 2022年3月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
AdarGCN: Adaptive Aggregation GCN for Few-Shot Learning
小贴士
相关VIP内容
【AAAI2022】基于渐进式增强学习的人脸伪造图像检测
专知会员服务
21+阅读 · 2022年1月19日
Nat. Mach. Intell. | 分子表征的几何深度学习
专知会员服务
24+阅读 · 2021年12月26日
专知会员服务
42+阅读 · 2021年9月7日
专知会员服务
31+阅读 · 2021年7月26日
专知会员服务
31+阅读 · 2021年7月25日
专知会员服务
26+阅读 · 2021年4月2日
机器学习在材料科学中的应用综述,21页pdf
专知会员服务
48+阅读 · 2019年9月24日
相关基金
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
微信扫码咨询专知VIP会员