Multilingual pre-trained models are able to zero-shot transfer knowledge from rich-resource to low-resource languages in machine reading comprehension (MRC). However, inherent linguistic discrepancies in different languages could make answer spans predicted by zero-shot transfer violate syntactic constraints of the target language. In this paper, we propose a novel multilingual MRC framework equipped with a Siamese Semantic Disentanglement Model (SSDM) to disassociate semantics from syntax in representations learned by multilingual pre-trained models. To explicitly transfer only semantic knowledge to the target language, we propose two groups of losses tailored for semantic and syntactic encoding and disentanglement. Experimental results on three multilingual MRC datasets (i.e., XQuAD, MLQA, and TyDi QA) demonstrate the effectiveness of our proposed approach over models based on mBERT and XLM-100. Code is available at:https://github.com/wulinjuan/SSDM_MRC.
翻译:多语言预先培训的模型能够在机器阅读理解中将知识从丰富资源向低资源语言转移为零,但是,不同语言的内在语言差异可能使零光传输所预测的回答范围超出目标语言的综合限制。在本文中,我们提议建立一个新型的多语种MRC框架,配有Siames语义分解模型(SSDM),在多语言预先培训模型所学的演示中将语义学与语法分离。为了明确将语义学知识转移到目标语言,我们提议了两组针对语义和合成编码和分解的损失。三个多语种MRC数据集(即XQuAD、MLQA和TyDi QA)的实验结果显示了我们所提议的方法对基于 mBERT 和 XLM-100的模型的有效性。代码见:https://github.com/wulinjuan/SSDMD_MRC。