Due to the development of pre-trained language models, automated code generation techniques have shown great promise in recent years. However, the generated code is difficult to meet the syntactic constraints of the target language, especially in the case of Turducken-style code, where declarative code snippets are embedded within imperative programs. In this study, we summarize the lack of syntactic constraints into three significant challenges: (1) the efficient representation of syntactic constraints, (2) the effective integration of syntactic information, and (3) the scalable syntax-first decoding algorithm. To address these challenges, we propose a syntax-guided multi-task learning approach TurduckenGen. Specifically, we first explicitly append the type information to the code tokens to capture the representation of syntactic constraints. Then we formalize code generation with syntactic constraint representation as an auxiliary task to enable the model to learn the syntactic constraints of the code. Finally, the syntactically correct code is selected accurately from the multiple candidates with the help of the compiler feedback. Extensive experiments and comprehensive analysis demonstrate the effectiveness and general applicability of our approach after being compared with six state-of-the-art baselines on two Turducken-style code datasets. Finally, we conducted a human study and found the code quality generated by our approach is better than baselines in terms of code readability and semantic similarity.


翻译:由于开发了经过事先训练的语言模型,自动化代码生成技术近年来显示出很大的希望,然而,生成的代码很难满足目标语言的综合限制,特别是在Turducken式代码中,该代码将声明代码片断嵌入强制程序。在本研究中,我们总结出缺乏合成制约的三大挑战:(1) 有效表述综合制约因素,(2) 有效整合合成信息,(3) 缩略式的首级合成解码算法。为了应对这些挑战,我们建议采用以合成税为指南的多任务学习方法TurduckenGen。具体地说,我们首先将类型信息明确附加在代码符号中,以体现合成制约的表示。然后,我们将缺乏合成制约的整合制约归纳成一个辅助性任务,使模型能够学习该代码的合成制约。最后,从多个候选人中准确选择了可缩略式的正确代码,同时帮助进行编译者反馈。 广泛的实验和全面分析将类型信息附加在代码中,最终通过比我们制定的人类代码的6项基线和总体数据应用性,通过比我们所制定的6项基线和总体数据方法,通过阅读了比我们所发现的6项基准和总体数据方法。</s>

0
下载
关闭预览

相关内容

代码(Code)是专知网的一个重要知识资料文档板块,旨在整理收录论文源代码、复现代码,经典工程代码等,便于用户查阅下载使用。
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
征稿 | International Joint Conference on Knowledge Graphs (IJCKG)
开放知识图谱
2+阅读 · 2022年5月20日
Multi-Task Learning的几篇综述文章
深度学习自然语言处理
15+阅读 · 2020年6月15日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
10+阅读 · 2021年2月26日
Arxiv
21+阅读 · 2020年10月11日
Deep Learning for Generic Object Detection: A Survey
Arxiv
13+阅读 · 2018年9月6日
Arxiv
19+阅读 · 2018年3月28日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
征稿 | International Joint Conference on Knowledge Graphs (IJCKG)
开放知识图谱
2+阅读 · 2022年5月20日
Multi-Task Learning的几篇综述文章
深度学习自然语言处理
15+阅读 · 2020年6月15日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员