项目名称: 基于三维纳米多孔石墨烯的高能量密度柔性赝电容超级电容器的研究
项目编号: No.51502092
项目类型: 青年科学基金项目
立项/批准年度: 2016
项目学科: 一般工业技术
项目作者: 陈庐阳
作者单位: 华东理工大学
项目金额: 20万元
中文摘要: 随着消费电子产品小型化及可穿戴、可折叠柔性电子产品概念的提出,开发具备大比电容、高能量密度、快速充放电的柔性超级电容器,成为能量存储领域中的一个研究热点。本项目拟使用纳米多孔金属衍生的三维纳米多孔石墨烯作为载体,调节其孔径、孔隙率、电导率和柔韧性,优化二氧化锰和氧化镍等活性物质在三维多孔腔道里的水热生长或电化学沉积,构建以三维纳米多孔石墨烯为基础、不使用粘合剂的新型赝电容电极材料。本项目将利用三维纳米多孔石墨烯优越的导电性和良好的柔韧性分别提高电极材料的电容性能和机械性能。此外,本项目将进一步研究三维纳米多孔石墨烯基复合材料电极在离子液体电解液的电化学现象,系统归纳电极材料结构和离子液体种类对提高比电容、工作电势窗口等因素的影响,达到实现高能量密度柔性赝电容超级电容器的目的。同时,拟对离子液体中电极材料产生电容性的机理进行分析,为今后超级电容器的设计和应用提供理论指导。
中文关键词: 三维纳米多孔石墨烯;纳米复合材料;赝电容超级电容器;柔性;高能量密度
英文摘要: Accompanied with the miniaturization of consumer electronics and the demand of flexible/bendable electronics, it is urgent to develop the corresponding flexible supercapacitor with large specific capacitance, high energy density and rapid rate capability, which has become a hotspot in the field of energy storage. In the project, we will develop three dimensional (3D) nanoporous graphene deriving from nanoporous metal as the support of active materials, adjust the pore size, porosity, conductivity and flexibility of nanoporous graphene, optimize the hydrothermal growth or electrodeposition of active materials (MnO2, NiO, etc) in the 3D channels, and construct 3D bicontinuous nanoporous graphene based hybrids for novel pseudo-capacitive electrode materials without binding agent. The project will utilized the excellent conductivity and flexibility of nanoporous graphene to improve the capacitive performance and mechanical behavior of electrode materials. In addition, the project will further study the electrochemical properties of 3D nanoporous graphene based composites in the electrolyte of ionic liquid. The influences of microstructure of electrode materials and types of ionic liquids on increase of specific capacitance and working potential window will be deeply explored. Meanwhile, the capacitance mechanism in ionic liquid will be analyzed to supply the theoretic guide to the design and application of future supercapacitor.
英文关键词: three-dimensional nanoporous graphene;nanocomposite;pseudocapacitor;flexibility;high energy density