Deep reinforcement learning (DRL) has emerged as a promising solution to mastering explosive and versatile quadrupedal jumping skills. However, current DRL-based frameworks usually rely on well-defined reference trajectories, which are obtained by capturing animal motions or transferring experience from existing controllers. This work explores the possibility of learning dynamic jumping without imitating a reference trajectory. To this end, we incorporate a curriculum design into DRL so as to accomplish challenging tasks progressively. Starting from a vertical in-place jump, we then generalize the learned policy to forward and diagonal jumps and, finally, learn to jump across obstacles. Conditioned on the desired landing location, orientation, and obstacle dimensions, the proposed approach contributes to a wide range of jumping motions, including omnidirectional jumping and robust jumping, alleviating the effort to extract references in advance. Particularly, without constraints from the reference motion, a 90cm forward jump is achieved, exceeding previous records for similar robots reported in the existing literature. Additionally, continuous jumping on the soft grassy floor is accomplished, even when it is not encountered in the training stage. A supplementary video showing our results can be found at https://youtu.be/nRaMCrwU5X8 .
翻译:暂无翻译