项目名称: 基于混合属性分析的人体行为识别方法研究
项目编号: No.61401309
项目类型: 青年科学基金项目
立项/批准年度: 2014
项目学科: 无线电电子学、电信技术
项目作者: 张重
作者单位: 天津师范大学
项目金额: 24万元
中文摘要: 行为属性需要人为定义,因此很难保证完全描述行为类别的所有视觉信息。针对人为定义属性相对主观的问题,本课题拟研究利用混合属性(数据驱动属性和人为定义属性)对人体行为进行识别。我们拟在以下三个方面开展研究。第一,研究数据驱动属性的生成方法,拟提出语义约束模糊聚类方法,使数据驱动属性既与人为定义属性互补又能考虑特征点之间的时空关系。第二,为了充分利用混合属性的语义特征,拟提出属性约束弱监督多任务学习方法,建立底层特征、数据驱动属性、人为定义属性和行为类别之间的关系。第三,针对混合属性方法中无训练样本类别的分类问题,拟研究多任务学习框架下的零样本学习方法。该研究学习得到的模型可以充分挖掘语义信息,帮助提高属性方法的实用性。
中文关键词: 行为识别;特征融合;;;
英文摘要: The action attributes are usually defined manually, and therefore human-defined attributes cannot guarantee the complete description of all visual information for an action class. To overcome the subjectivity of human-defined attributes, this project plan
英文关键词: action recognition;feature fusion;;;