The long-time evolution of extreme mass-ratio inspiral systems requires minimal phase and dispersion errors to accurately compute far-field waveforms, while high accuracy is essential near the smaller black hole (modeled as a Dirac delta distribution) for self-force computations. Spectrally accurate methods, such as nodal discontinuous Galerkin (DG) methods, are well suited for these tasks. Their numerical errors typically decrease as $\propto (\Delta x)^{N+1}$, where $\Delta x$ is the subdomain size and $N$ is the polynomial degree of the approximation. However, certain DG schemes exhibit superconvergence, where truncation, phase, and dispersion errors can decrease as fast as $\propto (\Delta x)^{2N+1}$. Superconvergent numerical solvers are, by construction, extremely efficient and accurate. We theoretically demonstrate that our DG scheme for the scalar Teukolsky equation with a distributional source is superconvergent, and this property is retained when combined with the hyperboloidal layer compactification technique. This ensures that waveforms, total energy and angular-momentum fluxes, and self-force computations benefit from superconvergence. We empirically verify this behavior across a family of hyperboloidal layer compactifications with varying degrees of smoothness. Additionally, we show that self-force quantities for circular orbits, computed at the point particle's location, also exhibit a certain degree of superconvergence. Our results underscore the potential benefits of numerical superconvergence for efficient and accurate gravitational waveform simulations based on DG methods.
翻译:暂无翻译