This paper presents a new approach for 3D shape generation, inversion, and manipulation, through a direct generative modeling on a continuous implicit representation in wavelet domain. Specifically, we propose a compact wavelet representation with a pair of coarse and detail coefficient volumes to implicitly represent 3D shapes via truncated signed distance functions and multi-scale biorthogonal wavelets. Then, we design a pair of neural networks: a diffusion-based generator to produce diverse shapes in the form of the coarse coefficient volumes and a detail predictor to produce compatible detail coefficient volumes for introducing fine structures and details. Further, we may jointly train an encoder network to learn a latent space for inverting shapes, allowing us to enable a rich variety of whole-shape and region-aware shape manipulations. Both quantitative and qualitative experimental results manifest the compelling shape generation, inversion, and manipulation capabilities of our approach over the state-of-the-art methods.
翻译:本文介绍了3D 形状生成、 倒置和操控的新方法, 其方法是对波盘域连续隐含的表达方式进行直接的基因模型。 具体地说, 我们提出一个包含一对粗粗和详细系数体积的紧凑的波浪图示, 暗含3D 形状的3D 形状通过短短的签名距离函数和多尺度双曲线波子生成。 然后, 我们设计了一对神经网络: 一个基于扩散的生成器, 以以粗粗系数体的形式生成不同的形状, 一个详细预测器, 以生成相容的详细系数体积, 以引入精细的结构和细节 。 此外, 我们还可以联合培训一个编码器网络, 以学习反形的潜在空间, 使我们能够促成大量的全形状和区域认知形状操纵。 定量和定性实验结果都显示了我们对最先进方法的惊人形状生成、 和操纵能力。