This paper addresses the problem of robotic cutting during disassembly of products for materials separation and recycling. Waste handling applications differ from milling in manufacturing processes, as they engender considerable variety and uncertainty in the parameters (e.g. hardness) of materials which the robot must cut. To address this challenge, we propose a learning-based approach incorporating elements of interaction control, in which the robot can adapt key parameters, such as feed rate, depth of cut, and mechanical compliance during task execution. We show how a mathematical model of cutting mechanics, embedded in a simulation environment, can be used to rapidly train the system without needing large amounts of data from physical cutting trials. The simulation approach was validated on a real robot setup based on four case study materials with varying structural and mechanical properties. We demonstrate the proposed method minimises process force and path deviations to a level similar to offline optimal planning methods, while the average time to complete a cutting task is within 25% of the optimum, at the expense of reduced volume of material removed per pass. A key advantage of our approach over similar works is that no prior knowledge about the material is required.
翻译:本文主要解决产品拆卸过程中机器人切割的问题,以实现材料分离和回收利用。废物处理应用不同于制造过程中的铣削,因为它们在机器人必须切割的材料参数(例如硬度)方面产生了相当大的多样性和不确定性。为了解决这个挑战,我们提出了一种基于学习的方法,其中融合了交互控制的要素,机器人可以在任务执行过程中适应关键参数,如进给速率、切削深度、机械柔顺性等。我们展示了如何在嵌入一个切割机械学模型的模拟环境中,在不需要大量来自物理切削试验的数据的情况下,快速培训系统。模拟方法在基于四种案例材料的真实机器人设置上进行了验证,这些材料具有不同的结构和机械特性。我们证明了所提出的方法将过程力和路径偏差最小化到一个类似于离线最优计划方式的水平,而完成切割任务的平均时间在最优时间的25%以内,以牺牲每次切割去除材料的量。我们的方法与类似的工作相比的一个关键优点是不需要关于材料的先验知识。