Tensor decomposition methods have proven effective in various applications, including compression and acceleration of neural networks. At the same time, the problem of determining optimal decomposition ranks, which present the crucial parameter controlling the compression-accuracy trade-off, is still acute. In this paper, we introduce MARS -- a new efficient method for the automatic selection of ranks in general tensor decompositions. During training, the procedure learns binary masks over decomposition cores that "select" the optimal tensor structure. The learning is performed via relaxed maximum a posteriori (MAP) estimation in a specific Bayesian model and can be naturally embedded into the standard neural network training routine. Diverse experiments demonstrate that MARS achieves better results compared to previous works in various tasks.
翻译:在各种应用中,包括压缩和加速神经网络方面,张量分解方法已被证明是有效的。与此同时,确定最佳分解秩的问题仍然是棘手的,因为它是控制压缩-精度权衡的关键参数。在本文中,我们介绍了MARS - 一种新的通用张量分解自动选择排名的高效方法。在训练期间,该过程通过学习二进制掩模,可以"选择"最佳张量结构。学习是通过一种特定的贝叶斯模型进行松弛的最大后验(MAP)估计来完成的,并且可以自然地嵌入标准神经网络训练例程中。各种实验表明,MARS在不同任务中与之前的工作相比取得了更好的结果。