Removing the rain streaks from single image is still a challenging task, since the shapes and directions of rain streaks in the synthetic datasets are very different from real images. Although supervised deep deraining networks have obtained impressive results on synthetic datasets, they still cannot obtain satisfactory results on real images due to weak generalization of rain removal capacity, i.e., the pre-trained models usually cannot handle new shapes and directions that may lead to over-derained/under-derained results. In this paper, we propose a new semi-supervised GAN-based deraining network termed Semi-DerainGAN, which can use both synthetic and real rainy images in a uniform network using two supervised and unsupervised processes. Specifically, a semi-supervised rain streak learner termed SSRML sharing the same parameters of both processes is derived, which makes the real images contribute more rain streak information. To deliver better deraining results, we design a paired discriminator for distinguishing the real pairs from fake pairs. Note that we also contribute a new real-world rainy image dataset Real200 to alleviate the difference between the synthetic and real image do-mains. Extensive results on public datasets show that our model can obtain competitive performance, especially on real images.


翻译:将雨水从单一图像中去除,仍然是一项具有挑战性的任务,因为合成数据集中的降雨线的形状和方向与真实图像大相径庭。尽管受监督的深度排减网络在合成数据集方面取得了令人印象深刻的结果,但由于雨水清除能力一般化薄弱,它们仍然无法在真实图像上取得令人满意的结果,即预先培训的模型通常无法处理新的形状和方向,从而可能导致过度排减/排减的结果。在本文件中,我们提议建立一个半受监督的基于GAN的脱线网络,称为半DebrainGAN,这个网络可以使用统一的网络中的合成和真实的雨下图象,使用两个监督和不受监督的过程。具体地说,一个半监视的雨水流学者称为SSRML,分享两个过程的相同参数,因此,实际图像通常无法提供更多的脱线信息。为了提供更好的脱线结果,我们设计了一个配对的导师,用来区分真实的配对与假对。注意,我们也可以在统一的网络中使用新的实时图像集成和真实的Real200号图像,以缩小真实的图像的图像,从而获得真实的图像的对比。

0
下载
关闭预览

相关内容

Networking:IFIP International Conferences on Networking。 Explanation:国际网络会议。 Publisher:IFIP。 SIT: http://dblp.uni-trier.de/db/conf/networking/index.html
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
GAN新书《生成式深度学习》,Generative Deep Learning,379页pdf
专知会员服务
202+阅读 · 2019年9月30日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
gan生成图像at 1024² 的 代码 论文
CreateAMind
4+阅读 · 2017年10月31日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2021年6月1日
Deep Co-Training for Semi-Supervised Image Segmentation
VIP会员
相关VIP内容
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
GAN新书《生成式深度学习》,Generative Deep Learning,379页pdf
专知会员服务
202+阅读 · 2019年9月30日
Top
微信扫码咨询专知VIP会员