The existing approaches to identify personalized salience zones of a Web page do not consider the dynamic behavior in time of the Web user's gaze or the alterations of its content. For this reason, this paper proposes the concept of visit intention, an indicator of the visual attention of a Web user in a certain period of time, short span time windows, in different areas of interest. This indicator gives information on the areas of interest of a website that will be visited by a user over a time window, without requiring to know the structure of the site in each window. Our approach leverages the population-level general gaze patterns and the user's visual kinetics. We show experimentally that it is possible to conduct such a prediction through multilabel classification models using a small number of users, obtaining an average area under curve of 84.3 %, an average accuracy of 79 %, and an individual area of interest accuracy of 77 %. Furthermore, the user's visual kinetics features are consistently selected in every set of a cross-validation evaluation.
翻译:确定网页个人化突出区域的现有方法没有考虑到在网络用户凝视或修改其内容时的动态行为。 因此,本文件提出访问意向的概念,这是网络用户在特定时间、短时间窗口、不同感兴趣的领域视觉关注的一个指标。 该指标提供了用户在时间窗口访问的网站感兴趣的领域的信息,而不需要了解每个窗口的网站结构。我们的方法利用了人口层次的一般凝视模式和用户的视觉动能。我们实验性地显示,利用少数用户的多标签分类模型进行这种预测是可能的,获得84.3%的曲线下的平均区域、79%的平均准确度和77%的单个兴趣领域。此外,用户的视觉动能特征在每套交叉校验评价中都得到一致选择。