Many combinatorial optimization problems can be approximated within $(1 \pm \epsilon)$ factors in $\text{poly}(\log n, 1/\epsilon)$ rounds in the LOCAL model via network decompositions [Ghaffari, Kuhn, and Maus, STOC 2018]. These approaches require sending messages of unlimited size, so they do not extend to the CONGEST model, which restricts the message size to be $O(\log n)$ bits. In this paper, we develop a generic framework for obtaining $\text{poly}(\log n, 1/\epsilon)$-round $(1\pm \epsilon)$-approximation algorithms for many combinatorial optimization problems, including maximum weighted matching, maximum independent set, and correlation clustering, in graphs excluding a fixed minor in the CONGEST model. This class of graphs covers many sparse network classes that have been studied in the literature, including planar graphs, bounded-genus graphs, and bounded-treewidth graphs. Furthermore, we show that our framework can be applied to give an efficient distributed property testing algorithm for an arbitrary minor-closed graph property that is closed under taking disjoint union, significantly generalizing the previous distributed property testing algorithm for planarity in [Levi, Medina, and Ron, PODC 2018 & Distributed Computing 2021]. Our framework uses distributed expander decomposition algorithms [Chang and Saranurak, FOCS 2020] to decompose the graph into clusters of high conductance. We show that any graph excluding a fixed minor admits small edge separators. Using this result, we show the existence of a high-degree vertex in each cluster in an expander decomposition, which allows the entire graph topology of the cluster to be routed to a vertex. Similar to the use of network decompositions in the LOCAL model, the vertex will be able to perform any local computation on the subgraph induced by the cluster and broadcast the result over the cluster.


翻译:许多组合优化问题可以在 $( 1 \ pm \ exexplain \ explain) 的 $( text{poly} (\ log n, 1/\ epsilon) 中以 美元计数, 在 LOCAL 模型中, 通过网络分解 [ Ghaffari, Kuhn 和 Maus, STOC 2018], 来大致排序优化问题。 这些方法需要发送无限大小的信息, 因此它们不延伸至 CONEST 模型, 将信息大小限制为 $( log n) 。 在本文中, 我们开发了一个通用 $\ text{poly { polly}( logy, 1/\ epsilon) 的通用框架 来获取 $( 1\ p\ p\ premodecomlical discoal ) 。 在普通平流模型中, 将本地的平流化的平流数据 显示我们内部的平流化的平流数据框架, 将显示我们内部的平流的平流的平流数据。

0
下载
关闭预览

相关内容

因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
国家自然科学基金
3+阅读 · 2017年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2022年7月6日
Arxiv
0+阅读 · 2022年7月2日
VIP会员
相关资讯
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
相关基金
国家自然科学基金
3+阅读 · 2017年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员