This paper introduces a novel approach to embed flow-based models with hierarchical structures. The proposed framework is named Variational Flow Graphical (VFG) Model. VFGs learn the representation of high dimensional data via a message-passing scheme by integrating flow-based functions through variational inference. By leveraging the expressive power of neural networks, VFGs produce a representation of the data using a lower dimension, thus overcoming the drawbacks of many flow-based models, usually requiring a high dimensional latent space involving many trivial variables. Aggregation nodes are introduced in the VFG models to integrate forward-backward hierarchical information via a message passing scheme. Maximizing the evidence lower bound (ELBO) of data likelihood aligns the forward and backward messages in each aggregation node achieving a consistency node state. Algorithms have been developed to learn model parameters through gradient updating regarding the ELBO objective. The consistency of aggregation nodes enable VFGs to be applicable in tractable inference on graphical structures. Besides representation learning and numerical inference, VFGs provide a new approach for distribution modeling on datasets with graphical latent structures. Additionally, theoretical study shows that VFGs are universal approximators by leveraging the implicitly invertible flow-based structures. With flexible graphical structures and superior excessive power, VFGs could potentially be used to improve probabilistic inference. In the experiments, VFGs achieves improved evidence lower bound (ELBO) and likelihood values on multiple datasets.
翻译:本文引入了将流基模型嵌入等级结构的新颖方法。 拟议的框架名为 VFG 模型。 VFG 通过通过信息传递方案整合流基函数,通过变量推导整合流基函数。 通过利用神经网络的显示力, VFG 生成了数据表达法, 从而克服了许多流基模型的缺点, 通常需要一个包含许多微小变量的高维潜层空间。 在 VFG 模型中引入了聚合节点, 以通过信息传递方案整合前向后向的等级信息。 通过将数据概率的较低约束证据最大化( ELBO ), 将每个组合的前向和后向信息匹配, 实现一致性的状态。 VGorimthms 开发了一种模型, 通过对ELBO 目标的梯度更新来学习模型参数。 粗略节点使 VFG 能够在图形结构上应用高维基点灵活性 。 除了代表学习和数字推断外, VFGs 提供了一种在图像流中进行双向性分析的理论分析方法, 用于潜在数据流的VG 。