项目名称: 反应扩散方程中时滞引发的不稳定性和Hopf分支
项目编号: No.11301111
项目类型: 青年科学基金项目
立项/批准年度: 2014
项目学科: 数理科学和化学
项目作者: 陈珊珊
作者单位: 哈尔滨工业大学
项目金额: 23万元
中文摘要: 本项目拟研究非局部时滞和交错扩散对于反应扩散方程的影响。研究内容包括:对具非局部时滞的反应扩散方程,首先通过发展局部时滞情形下的分析Hopf分支的方法,研究非局部时滞情形下稳态解附近的Hopf分支的存在性,然后利用中心流形定理和规范型方法研究Hopf分支的分支方向及分支周期解的稳定性等性质。对于具时滞和交错扩散的反应扩散方程,首先对于时滞为零情形,通过对稳态分支和 Hopf分支的研究,考察交错扩散导致的空间非均匀模式生成,然后研究时滞对于具交错扩散项的反应扩散方程的影响,考察时滞导致的空间非均匀模式生成。 与局部时滞相比,非局部时滞给特征值分析带来了困难,此外,对于具交错扩散和时滞的反应扩散方程,理论结果还很少。因此本项目不仅需要发展已有的理论工具,同时还需要新的方法。
中文关键词: 时滞;反应扩散;非局部;分支;
英文摘要: This Project is to investigate the effect of nonlocal delay and cross-diffusion on reaction-diffusion equations. For reaction-diffusion equations with nonlocal delay effect, we firstly investigate the existence of Hopf bifurcation near the steady state solution by developing the method dealing with the case of local delay effect, and then investigate the direction of Hopf bifurcation and the stability of the bifurcating periodic solutions through center manifold theorem and normal form theory. For reaction-diffusion equations with delay and cross-diffusion, firstly for the case that delays are equal to zeros, we investigate the spatially inhomogeneous pattern formation induced by cross-diffusion through steady state bifurcation and Hopf bifurcation, and then we consider the effect of the delay, and investigate the spatially inhomogeneous pattern formation induced by delay. Comparing with local delay, the nonlocal delay brings more difficulites in analyzing the eigenvalue problem, and moreover there are few theoretical results on reaction-diffusion equations with delay and cross-diffusion. Hence we not only need to use existing theory, but also need to develop new methods.
英文关键词: Delay;Reaction-Diffusion;Nonlocal;Bifurcation;