We are interested in estimating the uncertainties of deep neural networks, which play an important role in many scientific and engineering problems. In this paper, we present a striking new finding that an ensemble of neural networks with the same weight initialization, trained on datasets that are shifted by a constant bias gives rise to slightly inconsistent trained models, where the differences in predictions are a strong indicator of epistemic uncertainties. Using the neural tangent kernel (NTK), we demonstrate that this phenomena occurs in part because the NTK is not shift-invariant. Since this is achieved via a trivial input transformation, we show that it can therefore be approximated using just a single neural network -- using a technique that we call $\Delta-$UQ -- that estimates uncertainty around prediction by marginalizing out the effect of the biases. We show that $\Delta-$UQ's uncertainty estimates are superior to many of the current methods on a variety of benchmarks -- outlier rejection, calibration under distribution shift, and sequential design optimization of black box functions.
翻译:我们感兴趣的是估计深神经网络的不确定性,这些网络在许多科学和工程问题中起着重要作用。在本文中,我们提出了一个惊人的新发现:在不断的偏差转移的数据集方面受过训练的、具有同等重量初始化作用的神经网络合体,产生了一些略有不一致的经过训练的模型,其中预测的差异是显性不确定性的强烈指标。我们使用神经相色内核(NTK)来证明这种现象的发生,部分原因是NTK不是易变的。由于这是通过微小的投入转换实现的,因此我们表明,可以仅仅使用一个单一的神经网络 -- -- 使用我们称之为$Delta-$UQ的技术 -- -- 来估计预测的不确定性,将偏差效应边缘化。我们显示,$Delta-$UQ的不确定性估计优于目前许多基准方法 -- -- 外部排斥、分配中的校正值转换和黑盒功能的顺序设计优化。