This paper proposes a generalization of Gaussian mixture models, where the mixture weight is allowed to behave as an unknown function of time. This model is capable of successfully capturing the features of the data, as demonstrated by simulated and real datasets. It can be useful in studies such as clustering, change-point and process control. In order to estimate the mixture weight function, we propose two new Bayesian nonlinear dynamic approaches for polynomial models, that can be extended to other problems involving polynomial nonlinear dynamic models. One of the methods, called here component-wise Metropolis-Hastings, apply the Metropolis-Hastings algorithm to each local level component of the state equation. It is more general and can be used in any situation where the observation and state equations are nonlinearly connected. The other method tends to be faster, but is applied specifically to binary data (using the probit link function). The performance of these methods of estimation, in the context of the proposed dynamic Gaussian mixture model, is evaluated through simulated datasets. Also, an application to an array Comparative Genomic Hybridization (aCGH) dataset from glioblastoma cancer illustrates our proposal, highlighting the ability of the method to detect chromosome aberrations.


翻译:本文建议对高斯混合物模型进行概括化, 允许混合重量作为未知的时间函数。 该模型能够成功地捕捉数据特征, 模拟和真实的数据集证明了这一点。 它可以在集群、 变化点和进程控制等研究中有用。 为了估计混合重量函数, 我们建议两种新的巴耶西亚非线性多元模型的非线性动态方法, 这些方法可以扩展至涉及多边非线性动态模型的其他问题。 其中一种方法, 称为Metropolis- Hasting, 能够成功地捕捉数据特征, 通过模拟数据集将Metropolips- Hasting 算法应用到状态方程式的每个本地级组件。 它比较笼统, 可以在观测和状态方程式不线性连接的任何情况下使用。 另一种方法倾向于更快, 但具体应用到二元数据( 使用 probit 链接功能) 。 在拟议的动态高斯混合模型中, 通过模拟数据集评估这些方法的性能。 另外, 一种应用Metopolipolips- Has 算法, 演示我们测算方法的对比性模型。

0
下载
关闭预览

相关内容

不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
74+阅读 · 2022年6月28日
专知会员服务
26+阅读 · 2021年4月2日
【干货书】机器学习速查手册,135页pdf
专知会员服务
126+阅读 · 2020年11月20日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
154+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【推荐】ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
机器学习研究会
20+阅读 · 2017年12月17日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
3+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
VIP会员
相关VIP内容
不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
74+阅读 · 2022年6月28日
专知会员服务
26+阅读 · 2021年4月2日
【干货书】机器学习速查手册,135页pdf
专知会员服务
126+阅读 · 2020年11月20日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
154+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
3+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员