This paper studies the statistical model of the non-centered mixture of scaled Gaussian distributions (NC-MSG). Using the Fisher-Rao information geometry associated to this distribution, we derive a Riemannian gradient descent algorithm. This algorithm is leveraged for two minimization problems. The first one is the minimization of a regularized negative log- likelihood (NLL). The latter makes the trade-off between a white Gaussian distribution and the NC-MSG. Conditions on the regularization are given so that the existence of a minimum to this problem is guaranteed without assumptions on the samples. Then, the Kullback-Leibler (KL) divergence between two NC-MSG is derived. This divergence enables us to define a minimization problem to compute centers of mass of several NC-MSGs. The proposed Riemannian gradient descent algorithm is leveraged to solve this second minimization problem. Numerical experiments show the good performance and the speed of the Riemannian gradient descent on the two problems. Finally, a Nearest centroid classifier is implemented leveraging the KL divergence and its associated center of mass. Applied on the large scale dataset Breizhcrops, this classifier shows good accuracies as well as robustness to rigid transformations of the test set.
翻译:本文研究了高山分布比例扩大后非核心混合物的统计模型(NC-MSG) 。 使用与此分布相关的Fisher- Rao信息几何测量方法, 我们得出了一个里曼尼梯度下降算法。 这个算法用于两个最小化问题。 第一个算法是尽量减少正常的负日志可能性(NLL) 。 后者使白高斯分布和NC- MSG之间的权衡取最大利差。 后者使白高斯分布和NC- MSG之间的权衡取最大利差(NC- MSG)的权衡取最大值。 后者使白高斯分布和NC- MSG之间的权衡取利差条件得到保障, 使这一问题的最低存在没有假设。 然后, 得出了两个Nullback- Leiper(KL) 的差别。 这种差别使我们能够确定一个最小化的问题, 来计算几个NCNS- MSG的质量中心。 拟议的里曼梯度下降算法被用来解决第二个最小化问题。 数字实验显示里曼梯级在两个问题上的良好性。 最后, Neestrodrodroid分类器将利用KL的差异及其相关的中心。 在大规模的精确测试中, 显示稳性变。