In distributed ledger technologies (DLTs) with a directed acyclic graph (DAG) data structure, a block-issuing node can decide where to append new blocks and, consequently, how the DAG grows. This DAG data structure is typically decomposed into two pools of blocks, dependent on whether another block already references them. The unreferenced blocks are called the tips. Due to network delay, nodes can perceive the set of tips differently, giving rise to local tip pools. We present a new mathematical model to analyse the stability of the different local perceptions of the tip pools and allow heterogeneous and random network delay in the underlying peer-to-peer communication layer. Under natural assumptions, we prove that the number of tips is ergodic, converges to a stationary distribution, and provide quantitative bounds on the tip pool sizes. We conclude our study with agent-based simulations to illustrate the convergence of the tip pool sizes and the pool sizes' dependence on the communication delay and degree of centralization.
翻译:在分布式分类账技术(DLTs)中,有定向圆形图(DAG)数据结构的区块发布节点可以决定在哪里附加新区块,从而决定DAG是如何成长的。DAG数据结构通常分解成两个区块集合,取决于是否另一个区块已经引用了它们。未参照区块称为小点。由于网络延迟,节点可以不同地看待小点集,从而产生本地小点集合。我们提出了一个新的数学模型,用来分析本地对小点集合的不同认识的稳定性,并允许在基本的对等通信层中出现差异和随机的网络延迟。在自然假设下,我们证明小点数是垂直的,与固定分布相交汇,并提供小点集合体大小的定量界限。我们用基于代理的模拟来完成我们的研究,以演示小点池大小的趋同和集合体大小对通信延迟和集中程度的依赖性。