项目名称: 三类可积系统解的动力学性质研究
项目编号: No.11471263
项目类型: 面上项目
立项/批准年度: 2015
项目学科: 数理科学和化学
项目作者: 赖绍永
作者单位: 西南财经大学
项目金额: 72万元
中文摘要: 本申请项目主要研究Novikov方程、Camassa-Holm浅水波方程和Degasperis-Procesi浅水波方程解的某些动力学性质. 这三类非线性方程是可积的并具有很强的物理背景, 是目前数学物理领域非常活跃的研究模型. 虽然国内外学者对这三类方程已经做了大量的研究并取得了很多有意义的成果,但是还存在一些有待解决的问题. 我们将进一步研究Novikov方程、Camassa-Holm方程和Degasperis-Procesi方程解的动力学行为,包括在较弱条件下,其强弱解在特定空间的局部或渐近稳定性、爆破解、孤波在特定空间的稳定性等.
中文关键词: 非线性偏微分方程;可积系统;稳定性
英文摘要: The objective of this project is to investigate the dynamical properties of solutions for the Novikov, Camassa-Holm and Degasperis-Procesi equations, which are integrable and possess strong physical background. The study of these three equations is one of key topics in the area of mathematical physics. Although lots of research results for the three equations have been obtained, we know that some unknown dynamical problems for the equations need to be solved. We will further investigate various dynamic behaviors for the Novikov, Camassa-Holm and Degaspris-Procesi equations,including the stabilities of local or global strong (weak) solutions in certain spaces, blow-up solutions and the stability of solitary wave solutions in suitable spaces.
英文关键词: Nonlinear partial differential equations;Integrable systems;Stabilities