3D point cloud semantic segmentation is one of the fundamental tasks for 3D scene understanding and has been widely used in the metaverse applications. Many recent 3D semantic segmentation methods learn a single prototype (classifier weights) for each semantic class, and classify 3D points according to their nearest prototype. However, learning only one prototype for each class limits the model's ability to describe the high variance patterns within a class. Instead of learning a single prototype for each class, in this paper, we propose to use an adaptive number of prototypes to dynamically describe the different point patterns within a semantic class. With the powerful capability of vision transformer, we design a Number-Adaptive Prototype Learning (NAPL) model for point cloud semantic segmentation. To train our NAPL model, we propose a simple yet effective prototype dropout training strategy, which enables our model to adaptively produce prototypes for each class. The experimental results on SemanticKITTI dataset demonstrate that our method achieves 2.3% mIoU improvement over the baseline model based on the point-wise classification paradigm.


翻译:3D 点云的语义分解是 3D 场景理解的基本任务之一, 并被广泛用于 逆向 应用 。 许多最近 3D 点语义分解方法为每个语义类学习单一原型( 分类器重量), 并根据最近的原型对 3D 点点进行分类 。 然而, 学习每类只有一个原型, 限制了模型描述某类差异型的能力 。 本文中, 我们提议使用一个适应性的原型数来动态描述语义类的不同点模式 。 由于视觉变异器的强大能力, 我们设计了一个用于点云语义分解的 数字- 适应性原型( NAPL ) 学习模型 。 为了培训我们的NAPL 模型, 我们建议了一个简单而有效的原型辍学培训策略, 使模型能够适应每个阶级的原型。 SmanticKTI 数据设置的实验结果显示, 我们的方法比基于近点分类模式的基准模型改进了2.3% MIU 。

0
下载
关闭预览

相关内容

专知会员服务
38+阅读 · 2020年9月6日
抢鲜看!13篇CVPR2020论文链接/开源代码/解读
专知会员服务
49+阅读 · 2020年2月26日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
26+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
26+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2022年11月27日
Arxiv
10+阅读 · 2021年2月26日
AdarGCN: Adaptive Aggregation GCN for Few-Shot Learning
Arxiv
14+阅读 · 2019年9月11日
VIP会员
相关VIP内容
专知会员服务
38+阅读 · 2020年9月6日
抢鲜看!13篇CVPR2020论文链接/开源代码/解读
专知会员服务
49+阅读 · 2020年2月26日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
相关资讯
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
26+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
26+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员