We re-examine the situation entity (SE) classification task with varying amounts of available training data. We exploit a Transformer-based variational autoencoder to encode sentences into a lower dimensional latent space, which is used to generate the text and learn a SE classifier. Test set and cross-genre evaluations show that when training data is plentiful, the proposed model can improve over the previous discriminative state-of-the-art models. Our approach performs disproportionately better with smaller amounts of training data, but when faced with extremely small sets (4 instances per label), generative RNN methods outperform transformers. Our work provides guidance for future efforts on SE and semantic prediction tasks, and low-label training regimes.
翻译:我们利用基于变异器的变异自动编码器将句子编码成一个低维潜层空间,用于生成文字并学习SE分类器。 测试集和跨基因评估显示,如果培训数据丰富,拟议的模型可以比以往的歧视性最新模型有所改进。我们的方法比以往的歧视性最新模型要好得多,培训数据数量少得多,但当面临极小的数据集(每个标签4例)、基因型RNN方法优于变异器时。我们的工作为未来SE和语义预测任务以及低标签培训制度的工作提供了指导。