Perturb-and-MAP offers an elegant approach to approximately sample from a energy-based model (EBM) by computing the maximum-a-posteriori (MAP) configuration of a perturbed version of the model. Sampling in turn enables learning. However, this line of research has been hindered by the general intractability of the MAP computation. Very few works venture outside tractable models, and when they do, they use linear programming approaches, which as we will show, have several limitations. In this work we present perturb-and-max-product (PMP), a parallel and scalable mechanism for sampling and learning in discrete EBMs. Models can be arbitrary as long as they are built using tractable factors. We show that (a) for Ising models, PMP is orders of magnitude faster than Gibbs and Gibbs-with-Gradients (GWG) at learning and generating samples of similar or better quality; (b) PMP is able to learn and sample from RBMs; (c) in a large, entangled graphical model in which Gibbs and GWG fail to mix, PMP succeeds.
翻译:在这项工作中,我们提出了一种在离散的 EBM 中进行取样和学习的平行和可扩缩的机制。 模型可以任意使用,只要是使用可移动的因素建构的。 我们显示:(a) 对于Ising模型,PMP的量级比Gibbs和Gibbs- with-Gribbs(GWG)在学习和生成类似或更高质量的样本方面速度快于Gibbbs和Gibbs-widge-Gribs(GWG),PMP成功。