The Black-Scholes (B-S) equation has been recently extended as a kind of tempered time-fractional B-S equations, which become an interesting mathematical model in option pricing. In this study, we provide a fast numerical method to approximate the solution of the tempered time-fractional B-S model. To achieve high-order accuracy in space and overcome the weak initial singularity of the solution, we combine the compact operator with L1 approximation with nonuniform time steps to yield the numerical scheme. The convergence of the proposed difference scheme is proved to be unconditionally stable. Moreover, the kernel function in tempered Caputo fractional derivative is approximated by sum-of-exponentials, which leads to a fast unconditional stable compact difference method that reduces the computational cost. Finally, numerical results demonstrate the effectiveness of the proposed methods.


翻译:Black-Scholes(B-S)方程最近被作为调和时间分数B-S方程的一种扩展,成为期权定价中的有趣数学模型。在本研究中,我们提供了一种快速的数值方法来逼近调和时间分数B-S模型的解。为了在空间上获得高阶精度并克服解的弱初始奇异性,我们将紧致算子和L1逼近与非均匀时间步骤相结合,以产生数值方案。提出的差分方案的收敛性被证明是无条件稳定的。此外,通过指数求和来逼近调和Caputo分数导数中的核函数,导致了一种快速无条件稳定的紧致差分方法,从而降低了计算成本。最后,数值结果证明了所提出方法的有效性。

0
下载
关闭预览

相关内容

不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
73+阅读 · 2022年6月28日
专知会员服务
50+阅读 · 2020年12月14日
一起看 I/O | Compose for Wear OS Beta 版发布!
谷歌开发者
0+阅读 · 2022年5月25日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
LibRec 精选:推荐系统的论文与源码
LibRec智能推荐
14+阅读 · 2018年11月29日
vae 相关论文 表示学习 1
CreateAMind
12+阅读 · 2018年9月6日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Arxiv
0+阅读 · 2023年5月6日
VIP会员
相关VIP内容
相关基金
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员