Stochastic Klein--Gordon--Schr\"odinger (KGS) equations are important mathematical models and describe the interaction between scalar nucleons and neutral scalar mesons in the stochastic environment. In this paper, we propose novel structure-preserving schemes to numerically solve stochastic KGS equations with additive noise, which preserve averaged charge evolution law, averaged energy evolution law, symplecticity, and multi-symplecticity. By applying central difference, sine pseudo-spectral method, or finite element method in space and modifying finite difference in time, we present some charge and energy preserved fully-discrete scheme for the original system. In addition, combining the symplectic Runge-Kutta method in time and finite difference in space, we propose a class of multi-symplectic discretizations preserving the geometric structure of the stochastic KGS equation. Finally, numerical experiments confirm theoretical findings.
翻译:暂无翻译