We propose a reliable and efficient a posteriori error estimator for a hybridizable discontinuous Galerkin (HDG) discretization of the Helmholtz equation, with a first-order absorbing boundary condition, based on residual minimization. Such a residual minimization is performed on a local and superconvergent postprocessing scheme of the approximation of the scalar solution provided by the HDG scheme. As a result, in addition to the super convergent approximation for the scalar solution, a residual representative in the Riesz sense, which is further employed to derive the a posteriori estimators. We illustrate our theoretical findings and the behavior of the a posteriori error estimator through two ad-hoc numerical experiments.


翻译:我们提出了一种可靠和高效的后验误差估计器,适用于带一阶吸收边界条件的混合矛盾Galerkin(HDG)离散化Helmholtz方程。此类残差最小化是在一个本地和超收敛的HDG方案提供的标量解的后处理方案上进行的。因此,除了标量解的超收敛逼近之外,还提出了一个在Riesz意义上的残差代表,并进一步用于推导后验估计量。我们通过两个特定的数值实验说明了我们的理论发现和后验误差估计器的行为。

0
下载
关闭预览

相关内容

机器学习组合优化
专知会员服务
110+阅读 · 2021年2月16日
专知会员服务
51+阅读 · 2020年12月14日
【干货书】机器学习速查手册,135页pdf
专知会员服务
126+阅读 · 2020年11月20日
专知会员服务
62+阅读 · 2020年3月4日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
23+阅读 · 2022年2月4日
Arxiv
13+阅读 · 2021年5月25日
VIP会员
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员