Wearable devices permit the continuous monitoring of biological processes, such as blood glucose metabolism, and behavior, such as sleep quality and physical activity. The continuous monitoring often occurs in epochs of 60 seconds over multiple days, resulting in high dimensional longitudinal curves that are best described and analyzed as functional data. From this perspective, the functional data are smooth, latent functions obtained at discrete time intervals and prone to homoscedastic white noise. However, the assumption of homoscedastic errors might not be appropriate in this setting because the devices collect the data serially. While researchers have previously addressed measurement error in scalar covariates prone to errors, less work has been done on correcting measurement error in high dimensional longitudinal curves prone to heteroscedastic errors. We present two new methods for correcting measurement error in longitudinal functional curves prone to complex measurement error structures in multi-level generalized functional linear regression models. These methods are based on two-stage scalable regression calibration. We assume that the distribution of the scalar responses and the surrogate measures prone to heteroscedastic errors both belong in the exponential family and that the measurement errors follow Gaussian processes. In simulations and sensitivity analyses, we established some finite sample properties of these methods. In our simulations, both regression calibration methods for correcting measurement error performed better than estimators based on averaging the longitudinal functional data and using observations from a single day. We also applied the methods to assess the relationship between physical activity and type 2 diabetes in community dwelling adults in the United States who participated in the National Health and Nutrition Examination Survey.
翻译:暂无翻译