An approach based on the Fisher information (FI) is developed to quantify the maximum information gain and optimal experimental design in neutron reflectometry experiments. In these experiments, the FI can be analytically calculated and used to provide sub-second predictions of parameter uncertainties. This approach can be used to influence real-time decisions about measurement angle, measurement time, contrast choice and other experimental conditions based on parameters of interest. The FI provides a lower bound on parameter estimation uncertainties and these are shown to decrease with the square root of measurement time, providing useful information for the planning and scheduling of experimental work. As the FI is computationally inexpensive to calculate, it can be computed repeatedly during the course of an experiment, saving costly beam time by signalling that sufficient data has been obtained; or saving experimental datasets by signalling that an experiment needs to continue. The approach's predictions are validated through the introduction of an experiment simulation framework that incorporates instrument-specific incident flux profiles, and through the investigation of measuring the structural properties of a phospholipid bilayer.


翻译:以渔业者资料(FI)为基础的方法旨在量化中子反射实验中的最大信息收益和最佳实验设计;在这些实验中,FI可以进行分析计算,用于提供参数不确定性的次秒预测;这个方法可以用来影响关于测量角度、测量时间、对比选择和其他实验条件的实时决定,根据感兴趣的参数,FI提供参数估计不确定性的下限,这些不确定性随着测量时间的平方根而减少,为实验工作的规划和时间安排提供了有用的信息;由于FI计算成本低,因此在试验过程中可以反复计算,通过信号获得足够的数据节省了昂贵的波束时间;或者通过信号表明需要继续进行试验而节省了实验数据集;通过引入一个实验模拟框架,纳入特定仪器的意外通量剖图,并通过调查测量磷素双层的结构特性,使该方法的预测得到验证。

0
下载
关闭预览

相关内容

《计算机信息》杂志发表高质量的论文,扩大了运筹学和计算的范围,寻求有关理论、方法、实验、系统和应用方面的原创研究论文、新颖的调查和教程论文,以及描述新的和有用的软件工具的论文。官网链接:https://pubsonline.informs.org/journal/ijoc
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
商业数据分析,39页ppt
专知会员服务
159+阅读 · 2020年6月2日
Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
109+阅读 · 2020年5月15日
【干货书】真实机器学习,264页pdf,Real-World Machine Learning
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
意识是一种数学模式
CreateAMind
3+阅读 · 2019年6月24日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
计算机 | EMNLP 2019等国际会议信息6条
Call4Papers
18+阅读 · 2019年4月26日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Arxiv
0+阅读 · 2021年6月24日
Meta-Learning with Implicit Gradients
Arxiv
13+阅读 · 2019年9月10日
Arxiv
6+阅读 · 2018年12月10日
Implicit Maximum Likelihood Estimation
Arxiv
7+阅读 · 2018年9月24日
Interpretable Active Learning
Arxiv
3+阅读 · 2018年6月24日
VIP会员
相关VIP内容
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
商业数据分析,39页ppt
专知会员服务
159+阅读 · 2020年6月2日
Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
109+阅读 · 2020年5月15日
【干货书】真实机器学习,264页pdf,Real-World Machine Learning
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
相关资讯
意识是一种数学模式
CreateAMind
3+阅读 · 2019年6月24日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
计算机 | EMNLP 2019等国际会议信息6条
Call4Papers
18+阅读 · 2019年4月26日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员