We develop an R package RMM to implement a Conditional Logit (CL) model using the Robust Demand Estimation (RDE) method introduced in Cho et al. (2020), a customer choice-based $\textbf{R}$evenue $\textbf{M}$anagement $\textbf{M}$odel. In business, it is important to understand customers' choice behavior and preferences when the product prices change over time and across various customers. However, it is difficult to estimate demand because of unobservable no-purchase customers (i.e., truncated demand issue). The CL model fitted using the RDE method, enables a more general utility model with frequent product price changes. It does not require the aggregation of sales data into time windows to capture each customer's choice behavior. This study uses real hotel transaction data to introduce the R package RMM to provide functions that enable users to fit the CL model using the RDE method along with estimates of choice probabilities, size of no-purchase customers, and their standard errors.
翻译:我们开发了一个RMM软件包,以采用Cho等人(2020年)采用的强势需求估计法(RDE)实施有条件登录模式(RMM),这是基于客户选择的$textbf{R}$evenue$\textbf{M}$m}anagement$\textbf{M}$odel。在商业领域,当产品价格随时间和各种客户而变化时,必须理解客户的选择行为和偏好。然而,由于无法观察到的无购买客户(即快速需求问题),很难估计需求。CL模型安装了RDE方法,使得能够有一个更通用的通用的通用模型,经常发生产品价格变化。它不要求将销售数据汇总到时间窗口中以捕捉每个客户的选择行为。这项研究使用真实的酒店交易数据来引入RMMM,以便提供功能,使用户能够使用RMMMM,同时使用RDE方法与选择概率、无购买客户的规模及其标准错误的估算一道,使用户能够适应CL模式。