Causal discovery aims to recover causal structures generating the observational data. Despite its success in certain problems, in many real-world scenarios the observed variables are not the target variables of interest, but the imperfect measures of the target variables. Causal discovery under measurement error aims to recover the causal graph among unobserved target variables from observations made with measurement error. We consider a specific formulation of the problem, where the unobserved target variables follow a linear non-Gaussian acyclic model, and the measurement process follows the random measurement error model. Existing methods on this formulation rely on non-scalable over-complete independent component analysis (OICA). In this work, we propose the Transformed Independent Noise (TIN) condition, which checks for independence between a specific linear transformation of some measured variables and certain other measured variables. By leveraging the non-Gaussianity and higher-order statistics of data, TIN is informative about the graph structure among the unobserved target variables. By utilizing TIN, the ordered group decomposition of the causal model is identifiable. In other words, we could achieve what once required OICA to achieve by only conducting independence tests. Experimental results on both synthetic and real-world data demonstrate the effectiveness and reliability of our method.
翻译:原因发现旨在恢复产生观测数据的因果结构。尽管在某些问题中取得了成功,但在许多现实世界中,观察到的变量并不是感兴趣的目标变量,而是目标变量的不完善的衡量尺度。测量错误下的结果发现的目的是从测量错误的观测中恢复未观测的目标变量之间的因果图表。我们考虑对问题的特定表述,即未观测的目标变量采用线性非加利周期模型,测量过程遵循随机测量错误模型。这一公式的现有方法依赖于无法伸缩的过度完整的独立组成部分分析(OICA)。在这项工作中,我们建议采用变换独立噪音(TIN)条件,以检查某些计量变量的特定线性转变与某些其他计量变量之间的独立性。通过利用数据的非伽西尼特和高排序统计数据,TIN在未观测的目标变量中提供关于图形结构的信息。通过使用TIN,可以确定因果模型的定组分解状态。换言之,我们一旦需要OICA实现什么,只能通过进行可靠性和合成数据测试来证明我们真实的可靠性。